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ABSTRACT: We study theoretically situations where competition arises between an interdiffusion process
and a cross-linking chemical reaction at interfaces between pieces of the same polymer material. An
example of such a situation is observable in the formation of latex films, where, in the presence of a
cross-linking additive, colloidal polymer particles initially in suspension come at contact as the solvent
evaporates and, optimally, coalesce into a continuous coating. We considered the low cross-link density
situation in a previous paper and presented a simple control parameter that determines the final state
of the interface. In the present article, with the help of simple scaling arguments, we extend our description
to higher cross-link densities. We provide predictions for the strength of the interface in different favorable
and unfavorable regimes and discuss how it can be optimized.

1. Introduction

The purpose of this article is to present a theoretical
approach of situations where both interdiffusion and
chemical cross-linking occur at the interface between
two polymer pieces put in contact at a temperature
above their glass transition. Such situations are rather
commonplace in polymer processing. More precisely, our
main motivation lies in the formation of latex coatings:?
these contain many such interfaces (of mesoscopic
dimensions), and the issue of simultaneous interdiffu-
sion and cross-linking between adjacent polymer par-
ticles is crucial for the final properties of the product.
As shall be seen, our theoretical description remains
rather generic and should thus, in addition to latex
coatings, be of some relevance in other related contexts,
like the formation of a (macroscopic) joint between two
pieces of rubber.

The formation steps of latex coatings can be sum-
marized as follows! (see Figure 1). A colloidal dispersion
of polymer particles in water is applied onto a substrate.
As the water evaporates, the particles come into contact
and deform to create a void-free array of polyhedral
cells. When good contacts are formed, neighboring
particles start to coalesce; i.e., chain interdiffusion takes
place at the microscopic scale?~7 until, finally, the initial
interfaces have “healed” completely.

It is also quite usual to add a cross-linker agent into
the system (directly in the initial dispersed state),®°
with the main goal of improving the bulk properties of
the material. However, the introduction of a cross-linker
brings along difficulties: at the interfaces between
neighboring cells, a competition will arise between the
interdiffusion process and the chemical cross-linking
reaction, as they will both proceed in parallel. The
reason for this fact is simple: since the mobility of
polymer chains in the entangled state is drastically
reduced by chain branching, the cross-linking slows
down interdiffusion. Therefore, the addition of cross-
linker into the formulation, by preventing the healing
of the interfaces, and even any coalescence at all, may
sometimes prove more harmful than beneficial. The
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Figure 1. Formation of a latex coating (in the absence of an
external cross-linker agent): (&) the initial colloidal dispersion;
(b) the particles form a void-free array upon solvent evapora-
tion; (c) neighboring particles coalesce, and the initial bound-
aries faint gradually; (d) ultimately, the initial granular
structure has been lost, and the film is continuous.

central issue in this respect is to control the timing of
the chemical reaction.

In a previous paper,® we addressed this issue and
proposed a control parameter o, related to the physi-
cochemical properties of the polymer and the cross-
linker. We also discussed two limiting regimes, namely
the favorable “slow-reaction” regime and the unfavor-
able “fast-reaction” regime, and computed the final state
of coalescence in the film in each of them. Our study
had however a strong limitation: it assumed a very low
cross-linker concentration in the system, of the order
of one cross-linker molecule per chain. Obviously, prac-
tical situations are much more varied—in applications,
there is often a much higher cross-link density in the
final material. The present article is aimed at extending
our description by including this feature. To clarify as
much as possible the physical content of the theory, we
will here develop an approach based mainly on scaling
arguments.

Our point of view in this article will be that, when a
particular application is intended for the material under
consideration, one is led to specify requirements on the
bulk properties of the material. Now, in a quite general
fashion, these bulk properties are mainly controlled by
the final density of cross-links present in the material.
As a consequence, the specifications on the bulk proper-
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ties impose, in turn, that a given density of cross-links
must be incorporated in the material. In what follows,
we will thus work with the assumption that the cross-
link density has been fixed to a given value beforehand
(for “external” reasons) and is a given parameter of the
problem. More precisely, we will use the number of
monomers between cross-links N (inversely propor-
tional to the density) as a given parameter. We will then
provide estimates of the interfacial energy G under this
constraint on N and see how it can be optimized. In
other words, we could say that we try to optimize the
interface strength (and all related properties of the
material) at given bulk characteristics.

To explain this approach of the problem on a more
concrete basis, we can invoke again the context of latex
coatings. Examples of “bulk-related” properties are
given by the Young modulus of the coating, the surface
hardness, or the extent of swelling in the presence of
solvent.’® Experimentally, these properties are mainly
determined by the density of cross-links in the material
and are enhanced as this density increases.!! For the
Young modulus E, the relation is in fact well-known
from the classical theory of rubber elasticity: E ~ KT/
(Ncad), where KT is the thermal energy, a the polymer
unit (monomer) size and N the number of units between
cross-links. On the other hand, there is another set of
properties, like the film thoughness,’? the tensile
strength,® the resistance to scratching and solvent
application,* or the film homogeneity and aspect, which
are rather related to the state of the interfaces. Such
“interface related” properties are strongly dependent on
the extent of coalescence inside the film or, equivalently,
on the strength of the interfaces (the stronger the
interfaces, the better these properties).

We will assume in the rest of this paper that the
coalescence and interface strength, which determine the
level of the interface properties, are fairly well reflected
by the value of the interfacial adhesion energy G
between two neighboring particles of the coating. Pre-
dictions on this interfacial energy in different regimes
constitute the main goal of this work.

The article is organized as follows. In section 2, we
derive for a given distance between cross-links N, and
with the help of very simple scaling arguments, the
control parameter o that determines the final state of
the film. We also compute important quantities like the
interpenetration length and the surface density of
crossing chains. In section 3, we estimate the interfacial
energy G in different regimes. Finally, in section 4, we
discuss our results and present further perspectives of
study.

2. A Scaling Approach to the Interdiffusion/
Cross-Linking Competition

In this section, we present simple scaling arguments
describing the interdiffusion/cross-linking competition
at polymer—polymer interfaces. Let us first describe
more precisely the physical system under consideration.

2.1. Description of the System. In the context of
latex coatings, several kinds of systems are possible:
mixtures of particles of the same or of different polymers
(either miscible or immiscible), reaction through func-
tionalized groups on the chains or by addition of a
separate cross-linker molecule, etc. As in our previous
study, we will here remain with one of the simplest
systems of experimental relevance, that is to say,
homogeneous particles of the same polymer, and cross-
linking by addition of an external chemical reagent. (A
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brief discussion of other systems is given in section 4.3
of ref 10.) In the system chosen, all interfaces are
identical, and we focus on the evolution of one of them—
which amounts to studying the general problem of the
competition of interdiffusion and “external” cross-linking
at a symmetric polymer/polymer interface.

Let us thus assume that at t = 0 two pieces of the
same polymer material (for instance, two particles from
a latex dispersion) are put into contact at a temperature
above the glass transition, forming an interface that will
be taken to be planar. The polymer pieces are made of
a fixed initial network plus a volume concentration pg
of free chains (which will be able to diffuse across the
interface). The free chains are assumed to be linear and
monodisperse in the initial state (before the cross-
linking reaction starts). To remain close to experimental
situations, the chains are taken as statistical copolymers
of two different units A and A*, of which only A* may
bind with the cross-linker. As a consequence of this
chain structure, a quantity that will naturally prove of
importance is Ao*, the initial volume concentration of
A* sites in the system. The total number of units per
chain is N, with N greater than the entanglement
threshold N = 100 (entangled state).

The cross-linker agent, X, is bifunctional, and we may
split the cross-linking reaction in two stages. The first
one is the binding of an X molecule to an A*-site borne
by a polymer chain P; and can be written as P;A* + X
— P1A*—X. The second step is the effective cross-linking
reaction, between a polymer chain P; bearing an A*X
site, and an A* on another chain Py, i.e., P1A*—X + A*P,
— P1A*—X—A*P,. The first step is quite a fast one, as
it involves the diffusion of small X molecules. The second
step, a reaction between two macromolecules, will on
the contrary be the limiting one. Thus, in the following,
we will consider the kinetics of the second stage only
and take for granted that at t = O the first step is
completed. As explained already, the number of mono-
mers between cross-links N (reached when the cross-
linking reaction is completed) is fixed, and we naturally
suppose N < N (all chains are branched and form a
network at the end).

Finally, we consider free, unreacted, chains to be
mobile, in contrast with chains that have been subject
to branching at some time (due to the cross-linking
reaction), which are from that time on considered to be
fixed at the location of occurrence of the reaction. Such
a simplification is not unreasonable, since it is known
that the reptation motion of a branched object is
exponentially slower than that of a linear one.'*

2.2. The Control Parameter o. Following the tracks
of our previous work,1® we here derive a parameter q,
called the control parameter, which characterizes the
final state of the interface (once all chains have reacted
and are immobilized). The idea is rather straightfor-
ward: the important parameter of the problem is given
by the comparison of the rate of the interdiffusion with
the rate of the cross-linking reaction. Thus, we define
o as the ratio between the typical interdiffusion time
Taitr and the typical reaction time Tyeae, that is

o= (1)

There are obviously two limits: when the reaction is
much faster than the interdiffusion (“fast-reaction”
regime), the chains are locked in place before any



4038 Aradian et al.

significant coalescence can occur. When the reaction is
slow enough (“slow-reaction” regime), the interface heals
completely before the reaction freezes the system.

The interdiffusion time Ty is the time needed to heal
completely the initial interface between the pieces in
contact, in the absence of reaction. Such a healing occurs
when interfacial chains on either side have traveled a
distance comparable to their own size inside the neigh-
boring piece of polymer.2~7 Referring to the theory of
reptation,1”18 the time needed for a chain to travel over
its own size is the so-called reptation time T, = ToN¥/
Ne (where 79 is a microscopic time typical of molecular
agitation). Thus, we deduce that

Tdiff = Trep = TONSINE (2)

We now need to estimate the typical reaction time
Treac. Quite intuitively, we define this time as the time
required to observe one reaction per chain in the system.
From a scaling law point of view, after this typical time,
every chain in the system has undergone branching at
least once and is fixed in position: the final state of the
film is reached. To evaluate Tyeac, let us follow one A*X
group on a given chain, chosen at random, and think in
terms of a lattice model. Every 7o time intervals, this
A*X group jumps onto a new site on the lattice,
neighboring the one it occupied during the previous time
interval. From this new location, the A*X is in position
to react with all the A* lying within a “capture distance”
b, which are, roughly, Ag*b2 in number. However, only
a fraction of these “collisions” inside the capture sphere
are efficient in giving a true reaction: this is reflected
in the value of Q, defined as the reactivity of the cross-
linker, which gives the probability of effective reaction
between two partners per unit time spent in collision
(that is, as long as their distance is less than the capture
radius). Then, as between two jumps the A*X sojourns
a time 1o on each location, the actual number of
reactions at each location is QrpAg*b? (for one A*X
group). Remembering that each chain contains a num-
ber N/N. of A*X groups, we deduce that the waiting time
Treac Necessary to reach a number of one reaction per
chain is given by the relation (N/N¢)Q7oAc*b3(T reac/70)
= 1. From that, we obtain

N, 1

N —QAO*b3 3)

~
reac

The preceding expression shows that the chemical
reaction is all the faster as the cross-linker is concen-
trated, the chains are long, the cross-linker is reactive,
and the concentration in sites capable of binding to the
cross-linker is high.

The above estimates of the characteristic times finally
yield the expression of the control parameter o

3 N*

Taitr
NN, 4)

=T

= Qr,Ax*b

reac

which will serve as a basis for the rest of the article.
For a given system, the two times Tgi and Tyeac Should
normally be experimentally measurable (and thus the
numerical value of o could be known in practice). The
diffusion time would be easy to determine, as we know
from eq 2 that Ty is close to Trep. As for the reaction
time Treac, the unknown quantities are the microscopic
reactivity Q and the capture radius b. These can be
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obtained by monitoring the rate of the cross-linking
reaction A*X + A* — A*XA* and by extracting out the
value of the corresponding reaction constant, k.1° One
can then make use of the physicochemical relation? k
= Qb? to compute directly the value of Tyeqc from eq 3
(the other quantities appearing in the equation being
easily measured by other means).

We also note that this formula for a is the generaliza-
tion of the one derived in the low cross-linker limit in
ref 10 (which is retrieved by having N; as large as
allowed, i.e., N; = N).

2.3. Interpenetration Length and Crossing
Chains Density. In section 3, we will compute inter-
facial adhesion energies that represent the strength of
the interface(s). In the process, as explained there, we
will need to know two quantities, which are the inter-
penetration length (the length over which the two
polymer pieces forming the joint have mixed) and the
crossing density (the density of chains crossing the inter-
face per unit area), at the end of the interface evolution.
We now give a scaling derivation of these quantities.

In a way that is consistent with the previous deriva-
tion of the control parameter a, the scaling argument
presented here simplifies the kinetics of the chemical
reaction as follows: as long as the time t is less than
the reaction time T eac, the reaction does not occur, and
all initially free chains remain free. Then, the reaction
occurs precisely at t = Treae, and after that time, all
chains are fixed, meaning that the final state of the film
is reached. (More refined calculations validating this
scaling approach can be found in ref 10.)

Let us start with the interpenetration length, which
is the average thickness that chains from one side of
the interface achieve to invade inside the other side. We
know from reptation theory”18 that, in the entangled
state, each chain undergoes a one-dimensional diffusion
inside a contorted “tube” representing the topological
constraints imposed by the other chains. Thus, in a time
t, a chain travels a curvilinear distance S(t) ~ t¥2 inside
the tube. To this contorted distance corresponds a linear,
“as the crow flies”, distance L(t), which can be shown to
be proportional to the square root of S(t) (because the
tube shape is a random walk). With the appropriate
physical constants, the interpenetration length L(t) at
time t can be written3~7

L(t) = vaS(t) = Ry(t/T )" (a<1) (5

where a is the monomer size, R is the Gaussian size of
the chains (Ro = aN'?), and Tyep is the reptation time
(Trep = Taitr, S€€ €q 2). Thus, when the reaction at t =
Treac brings an end to diffusion, the final interpenetra-
tion length is

ua _ Ro
I—final = RO(TreaC/Trep) = ((1 < 1) (6)

(11/4

and the corresponding contorted distance, really trav-
eled by the chain units along the tube, is

Stinal = Liinar /@ (@ < 1) (7)

We keep these equations for further use and now turn
to the computation of the density ¢ of the chains that
have crossed the interface (per unit area of surface). To
find themselves beyond the interface at time t = Tyeac,
these chains were all necessarily not farther than a
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distance Lgina from the interface, at t = 0. Assuming
that the initial volume concentration of free chains pg
is uniformly distributed inside the material 2 we deduce
that the surface density of crossing chains is

0 = polfinag (0 <1) (8)

To conclude this section, we should caution that, as
indicated, the previous equations are actually valid (and
will be used) only for aa < 1, that is, in the slow-reaction
regime. When o > 1, a saturation occurs (for example,
in the crossing density o), because the rate to which
polymer chains enter the interface becomes equal to the
rate to which those already present there leave it.10
However, we do not need to enter into these details, as
it is possible to compute the adhesion energy at oo > 1
without further knowledge.

3. Different Regimes for the Interfacial
Adhesion Energy

We are now in a position to compute the interfacial
adhesion energy, which we consider a fair indicator of
the extent of coalescence and the strength developed at
the interface. (We remind the reader that these quanti-
ties are important notably in the context of latex
coatings, where they have a strong impact on many
properties.)

3.1. A Brief Reminder on Scission and Extrac-
tion. The interfacial adhesion energy is the energy one
has to provide to open a fracture at the interface
between the two polymer pieces at contact (at the end
of the interface evolution). Because of viscoelastic dis-
sipation, this energy generally depends on the rate at
which the fracture is propagated. We shall here focus
on the quasi-static energy G, i.e., when the rate ap-
proaches zero. The energy cost in this limit has two
contributions (in elastomers). One is the classical Du-
pré’s work, valid for all materials (including those made
of short molecules) and due to van der Waals interac-
tions. This is a constant offset term that we will
henceforth omit. The other contribution is specific to
polymers and comes from the fact that some polymer
chains (“connectors”) may cross the interface and extend
over both sides, thereby strengthening the joint. This
connector contribution itself finds an origin in two
distinct processes taking place at the opening of the
fracture: chain scission (rupture of chemical bonds) and
chain extraction (connectors are dragged out of the
surrounding matrix). At zero-detachment rate, whether
a given interfacial chain will undergo pull-out or scission
depends on whether it is chemically tethered respec-
tively on one or both sides of the interface (Figure 2).

Theoretical models are available for both chain scis-
sion and extraction. In the case of scission, Lake and
Thomas?!® found

Gscission = anﬁ (9)
where U is of the order of a typical chemical bond
energy (denoted U,), ¢ is the density of connectors per
unit area of interface, and i is the number of monomers
under load along each connector. The physical origin of
this expression is that, to rupture a chain between two
cross-link points, each monomer between these points
must be put under load and brought close to the
breakage threshold. Hence, to bring a chain to scission,
we have to provide an energy U, to all the i monomers
between the anchorage points. For further use, we note
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Figure 2. Examples of connector chains. Chains “a” and “b”
are tethered only on one side of the interface by chemical bonds
(represented by black dots). At the fracture opening, they will
be pulled out of the other side. Chain “c” is tethered on both
sides and thus will have to break (scission).

that, in our case, the number of monomers under load
is naturally fixed by the separation between cross-links,
so that we have i = N, (for scission).

We should also immediately point out to avoid later
confusion that the connector density & is not necessarily
equal to the crossing density o given in eq 8, which
concerns polymer chains with N units: for instance, a
chain of N units that crosses the interface can bring
(from the adhesion point of view) several connectors
made of i = N units. This distinction will be important
to obtain a correct estimation of the adhesion energy in
some cases.

In the situation of chain extraction, Raphaél and de
Gennes?® found a very similar formula:

G U, (10)

extraction —
where & is the density of connectors to be pulled out
and A is the length to be extracted, but this time, the
factor Up giving the energy scale is a van der Waals
bond energy U,. Despite the analogy with eq 9, the
physics is quite different: when a chain is extracted, it
is exposed to air (interfacial cost) and extended (entropy
loss). At room temperature, both contributions to the
energy are of the same order: U, per monomer.

In mixed situations where during the fracture process,
some chains are extracted while others are broken, we
will simply assume that the two types of dissipation are
additive. However, in such instances, the adhesion
energy G is often dominated by the chemical part,
because U,/U, = 100.

3.2. Estimation of the Interfacial Energy G. With
the above models, we may now estimate the interfacial
adhesion energy G in different regimes. As announced
earlier, we will distinguish two regimes depending on
the value of the control parameter o the slow-reaction
regime (a < 1) and the fast-reaction regime (o. > 1). (It
will also appear that the fast-reaction regime is itself
divided in two subregimes.) We here present calcula-
tions and defer a physical discussion of our findings to
the next section.

We start with the slow-reaction regime: the reaction
is much slower than the interdiffusion process, which
means that the interface has time to heal completely
before the chains are stitched. In other words, the
interface is allowed to reach the equilibrium state
(relative to the interdiffusion process), and ideally, it is
no different from any other plane drawn inside the bulk
of the material. Thus, it is natural that the adhesion
energy of the interface becomes in this situation equal
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Figure 3. Typical conformations of interfacial chains. Chain
“a” is typical of the slow-reaction regime, with arms of
comparable size on both sides of the interface. Chain “b”
corresponds to the first subregime of the fast-reaction regime,
with only a small portion of the chain inserted beyond the
interface, and will have to rupture at the opening of a fracture.
Chain “c” depicts the situation in the second subregime, where
the inserted portions are even smaller. This chain will rather
be extracted from beyond the interface.

to the tear energy of the bulk (i.e., the tear energy of a
network with a cross-link separation N¢). In Figure 3,
chain “a” illustrates a typical configuration of interfacial
chains in this regime. When a fracture is opened, one
will have to break (chemically) all these chains that
cross the fracture plane, and we can use the Lake and
Thomas formula (eq 9), with a length of the connectors
f = N, to estimate the adhesion energy. The chains that
cross the interface (and undergo scission) lie within a
Gaussian radius a+v/N¢, and as the number of chains of
length N, is 1/(Nca3) per unit volume, we deduce that
we have & = av/N; x 1/(N:ad) = 1/(v/N.a?) broken
connectors per unit area. Thus, the adhesion energy is
simply (eq 9)

U,
G= ?‘/Nc = Gmax ((1 <1,N=< Nl) (ll)

which is the highest possible value in the material (at
fixed N¢) and is independent of the value of the control
parameter a. We note that eq 11 refers to values of a <
1. We may also say that, if all the parameters other than
N are fixed in the expression of a (eq 4), this corresponds
equivalently to having N less than a certain threshold
N; (which we shall compute explicitly later on).

Let us now consider the adhesion energy in the fast-
reaction regime: here, the interface has been frozen in
an out-of-equilibrium state. In average, chains did not
have much time to diffuse across the boundary, and the
inserted portions are shorter than in the previous slow-
reaction regime. (A sketch of a typical chain at the
interface in the fast-reaction regime is provided by the
chain labeled “b” in Figure 3.) Again, there is scission,
and the length of the connectors that will be broken at
the fracture opening is still i = N.. The density of chains
crossing the interface is not at equilibrium and has the
value o = poLyinal, as given by eq 8. However, we should
be careful at this point: as announced earlier, this
crossing density o is not the density of actual connectors
0. The crossing density o represents the number of
chains of length N that cross the interface, but once the
cross-links are formed, each of these chains is actually
divided into N/N.; segments of N; monomers and thus
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gives birth to several connectors of length N.. To take
this fact into account, it can be shown that the crossing
density o must be multiplied by a factor equal to Lsinal/
(av/N,) to give the actual connector density & (see the
Appendix for a detailed calculation): in computing the
adhesion energy, we must thus use ¢ = Lina/(av/'N¢)o
=~ Leinai?po/(av/Nc). Estimating the initial volume density
of free chains roughly as po = 1/(Na?3) (within a numer-
ical prefactor),?? we find finally

G~ UNG =G (1 <a <o, N; <N <Ny

12)

[ max 1/
(08

We see that now the energy displays an inverse depen-
dence in a and drops as o increases.

However, as indicated, the previous equation is valid
in a limited range, either in oo (¢ < o) or in N (N <
Ny). (The critical values a, and N, will be given shortly.)
The reason for this is that if the reaction becomes really
very fast compared to the interdiffusion (as a or N
increases), the portions of interfacial chains that are
allowed to penetrate into the other side of the interface
are extremely short and become shorter than N.. In such
conditions, as exemplified by chain “c” in Figure 3, these
portions have almost no chance to be cross-linked on
both sides of the boundary and should be rather
extracted at the opening of a fracture, implying that we
must now consider a subregime of the fast-reaction
regime where chain extraction predominates inside the
adhesion energy (eq 10). The length f to be pulled out
is of the order of the curvilinear length inserted beyond
the interface, i.e., 1 = Sfna/a = Lna?a? (eq 7). The
density of connectors here has no complications: there
is only one chain end to be extracted per crossing chain,
and so each crossing chains makes one connector. (Some
chains may have inserted both ends beyond the inter-
face, but this is probably unimportant.) The connector
density is thus simply & = poLsinal (€q 8), and altogether,
the energy writes, using eq 10

L*. Yo nv2 L

0=—
a2 a2 o

G=U, (@> o, N> N, (13)

The inverse dependence of G in a in this subregime
becomes more pronounced.

We now have, with eqs 11—13, a complete estimation
of the interfacial adhesion energies in the whole range
of the oe parameter. The critical values of a marking the
transitions between the various regimesareac =o; =1
where we cross over from the slow- to fast-reaction
regime and o = o where, inside the fast-reaction
regime, we switch from a scission-dominated subregime
to an extraction-dominated one.

The value of o, is easy to determine, since the
corresponding transition between subregimes is char-
acterized by the fact that the number of monomers
inserted beyond the interface by interfacial chains is
equal to the number of monomers between cross-links,
i.e., Lina?/a2 = N¢. Since Lfina = Ro/oY* (eq 6), we deduce
that

o= (Nﬂ)z (14)

Alternately, we can also think of these critical o
values as critical values on the chain length N, if within
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Figure 4. Schematic plot of the adhesion energy G throughout
different regimes (see text) as a function of the control
parameter o or of the chain length N (in situations where it
is the only free parameter). Note that values N < N are not
considered as they do not result in the formation of a
macroscopic network (gel).

our given system, the chain length is the only free
parameter. (All the other parameters entering the
expression of o given in eq 4 are fixed with known
values.) The crossover from slow- to fast-reaction regime
sets a first critical length N;, which is determined by
writing that o = 1 explicitly in terms of all the
parameters of the system (eq 4):
NeNc 1/4

Qr Ab?

N, =

(15)

A second critical length, corresponding to a = a, and
found in the same way, can also be computed:
N, 112
N, =|———F— (16)
2 \QrA*D N,

A schematic plot of the evolution of the adhesion
energy throughout the different regimes is shown in
Figure 4 (and will be discussed further in the next
section).

4. Discussion

4.1. Comments on the Results of the Model. In
the previous section, we found several regimes for the
final state of the interface: the slow-reaction regime and
the fast-reaction regime (with, for the latter, two sub-
regimes). We transit from one regime to another by
changing the value of a in the system, that is to say, by
changing the respective rates of the interdiffusion and
the cross-linking reaction. A special case that may have
practical applications is one where all the parameters
characterizing the system are fixed, except for the chain
length N. The transitions then occur for two critical
values N; and No.

The results of the computations of the preceding
section can be summarized as follows (see Figure 4). For
small a (a < 1) or short chains (N < Nj), the interface
is granted enough time to reach equilibrium before the
reaction occurs. The interfacial strength is in this case
maximum, with Gnax = Uopv/Ni/a2, and is equal to the
(ideal) bulk strength. When a or N is increased (1 < a
< az, N1 < N < Ny), we enter a regime (fast-reaction
regime) where the reaction occurs earlier and does not
allow for full equilibration: the interfacial energy starts
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decreasing (eq 12) and displays an inverse dependence
on o and N of the form G ~ o2 ~ N72, Finally, if we
increase a or N further (o0 > ap, N > Ny), the drop in
the adhesion becomes even more pronounced (eq 13):
G ~ Nllza—3/4 ~ N—52,

On a practical standpoint, our conclusion is that for
an optimized adhesion, i.e., optimized interface-related
properties, we need (as expected) to place the system
into the slow-reaction regime by a proper choice of the
essential parameters involved in o (or by a proper choice
of N if N is the only adjustable parameter). If, for some
reason, such a proper set of values of the parameters is
not accessible experimentally (for example, because the
cross-link concentration has been chosen very high, and
N is thus very small), we have predictions for the loss
in interface energy that should be expected (fast-
reaction regime).

At this point, it might be appropriate to give a
numerical example. A typical value for the critical chain
length N; (below which we want to operate) with N, =
100, N. = 500, Qro = 1079, and Ag*h® = Ag*a® = 0.1 (i.e.,
one A* site every 10 polymer units) is found to be (eq
15): N; = 4700 units (a reasonable number). In this
case, when N < N3, with Ug = 300 kJ/mol = 3.1 eV per
monomer and a =5 A, the adhesion energy amounts to
Gmax = 45 J/m2.

This value for the adhesion energy is not a very large
one, but it must be kept in mind that this is really the
lower-bound of observable energies, since it corresponds
to a zero-velocity fracture propagation. In practice, much
higher values are reached—hopefully, our estimations
provide nevertheless useful guidelines toward the most
advantageous situations.

4.2. The Marginal Case N¢ = N. We have worked
until now with the assumption that the cross-link
density and, accordingly, N, are determined by the
requirements on the bulk properties, and we optimized
the interface strength under this constraint. What
happens if the constraint can be relieved and we are
allowed to choose N freely? Suppose that we still want
to enhance the interfacial properties: once we have
placed ourselves into the slow-reaction regime, with an
adhesion energy G = Uov/NJ/a2, it is easily seen that G
will increase only if we increase N, i.e., have a looser
network with less cross-links. If we really do not care
much about the consequences on the bulk strength, we
can reduce the cross-link density to the lowest possible
value, i.e., two cross-links per chain (N; = 0.5N): we
shall call this limit where N = N, the “marginal case”.
(This marginal case was the one we studied in ref 10.)
In the slow-reaction regime, when N = N¢, the adhesion
energy (see eq 11) becomes G = UgN'2/aZ and is now
an increasing function of the chain length N. However,
if the chain length is increased too much, we fall into
the fast-reaction regime again (since a increases, too).
There is also a minor change as compared to the “usual”
fast-reaction regime described in the previous section:
the critical chain lengths N; and N, here collapse one
onto the other, so that the first subregime (scission)
disappears, and we enter directly into the second
(extraction-dominated) subregime, which can be shown©
to behave like G ~ N~7/4,

The whole evolution of G vs chain length in this
marginal regime is summarized in Figure 5. As can be
seen, there is an optimum in the curve at the transition
between the slow and fast regime. In our approach, this
optimum energy is predicted to be the maximum at-
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Figure 5. Schematic plot of the adhesion energy G vs the
chain length N in the marginal case N = N.

tainable adhesion energy in the system (when all
constraints on the bulk properties are released). The
optimum chain length Ngy is found by letting oo = 1,

N, 1/3
Nt = |——— a7)
Pt Q1A b’
and the optimum energy is then simply
Gopt = UgNop/a’ (18)

We should caution, however, that formulas 17 and 18
are based on extrapolations near a = 1 of the results
found at oo < 1 or a > 1 and should therefore be
regarded as tentative.

We may again give a numerical example. For N =
100, Qto = 1079, and A¢*b® = 0.1, we have Ny = 10 000
units. With Up = 300 kJ/mol = 3.1 eV per monomer and
a =5 A, the corresponding energy is Gopt = 200 J/m?2.

We close this section by emphasizing that this “mar-
ginal” regime is not very realistic for latex coatings,
where a high level of cross-linking is usually desired.
But it may be applicable to certain types of low cross-
link adhesives.

4.3. Concluding Remarks and Further Perspec-
tives. The approach to the competition of interdiffusion
and cross-linking at interfaces presented in this article
remains clearly very simplified, and we certainly do not
hope to provide a fully quantitative description of the
complexity inherent to real systems. Rather, the goal
of this work was to try to extract the essential param-
eters of such systems and see how they combine together
in governing the dynamics (inside the parameter o) or
in determining the final state of the interface (inside
the adhesion energy G).

We emphasize that the value of the control parameter
o = QrpAg*b3N*/(NeN,) can in pratice be modified by
many means: in section 4, we focused on the role of the
chain length N, but this might not be the most relevant
procedure from an industrial point of view. One could
also change the ratio between “active” A* sites and
“passive” A sites along polymer chains (thus affecting
the concentration A¢*) or change the temperature
(which would affect both Q and 7). Indeed, in a recent
experimental work on latex films,2® Liu et al. studied
(using fluorescence techniques) how the extent of coa-
lescence between neighboring particles varied when the
relative rates of interdiffusion and reaction were changed,
either by way of temperature or by adding an acid
catalyst that promoted the cross-linking reaction (i.e.,
in our language, increased Q). It is reasonable to think
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that this kind of system would probably provide a direct
and powerful approach to test the validity of our model.

To conclude this article, we wish to present now a list
of some remaining issues, which, in our view, would
have to be understood and included into a comprehen-
sive theory.

To start with, let us recall that we restricted the study
to the case of a symmetric interface with two identical
polymers facing each other. There are however many
other possibilities. (We refer the reader to section 4.3
of ref 10 for the corresponding discussion.)

One uncertain point is related to materials with a
very high degree of cross-linking, like many industrial
latex coatings, where the distance between cross-links
becomes significantly smaller than the distance between
entanglements (N; < N¢): as of now, it is not clear to
us whether our approach can be safely extrapolated to
such situations and, if not, how it should be amended.

A major issue is also to understand all these situa-
tions which have as a common feature to display
inhomogeneities, as they are in fact ubiquitous in
practice. For instance, in latex films, the stability of the
initial colloidal dispersion is ensured by coating the
individual polymer particles with a layer of a surfactant
or a charged polymer. But these surface layers, at the
time when the particles come into contact, may signifi-
cantly affect the interdiffusion dynamics.2* A closely
related difficulty arises when the polymer particles
themselves are structured, with a core and a shell that
often have very different properties (for example, a
different Ty). Another example where inhomogeneities
are crucial is found in the formation of a macroscopic
joint between two elastomers: a frequent complication
is the formation of an “interphase”, i.e., a region
(sometimes fairly broad) around the original interface,
where the properties of the material present significant
gradients.?> Quite often, this feature originates in a
nonuniform distribution of the cross-linking agent in the
initial situation (for example, more abundant at one side
of the interface), which then diffuses (with nonuniform
concentration) toward the interface. All the interfacial
evolution and the final properties become then quite
different.

Another unsolved problem arises when the cross-links
are not permanent and have a certain ability to unfasten
over long time scales. They may then migrate inside the
material and modify the properties of the material in
the bulk and at the interfaces.

Chain length polydispersity should also play a role
in the competition between interdiffusion and cross-
linking. There might be interesting effects, due to the
rapid diffusion of smaller chains toward the interface:
these might form a “crust” upon cross-linking and
considerably modify later diffusion of higher molecular
weights fractions.?® However, at present, we still lack
experiments on carefully controlled systems (for ex-
ample, with bimodal samples containing a mixture of
small and long molecules) to draw sound conclusions.

Finally, an interesting line of thought for future work
would be to explore analogies (and possible transposi-
tions) of the approach presented here to situations
where phase separation—rather than coalescence—
competes with cross-linking, as in thermoset—thermo-
plastic blends.?” These materials are obtained from an
initially homogeneous mixture of the thermoplastic
polymer with the thermoset precursor. The latter is
submitted to a cure, and as the reaction proceeds, the
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mixture usually destabilizes: a phase separation starts
and enters into competition with the cross-linking
reaction, which reduces chain mobility through branch-
ing processes. We hope to investigate this aspect in the
future.
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Appendix. Computation of the Connector
Density ¢

In this appendix, we present an estimation of the
density of connectors per unit area of interface &, which
was used to estimate the adhesion energy given in eq
12 for the fast-reaction regime (more precisely, in the
scission-dominated subregime delimited by 1 < o < ay,
or, equivalently, by N; < N < Npy).

To make a correct estimation of the connector density,
we must consider in some detail the spatial conforma-
tion of the chains lying at the interface. Initially (i.e.,
at t = 0), the interfacial chains are contorted because
they are not allowed to cross the interface and have to
“reflect” on it. Once the contact between neighboring
polymer pieces has been made, they start to relax
toward their equilibrium Gaussian conformations
(thereby crossing the boundary). However, in the fast-
reaction regime under consideration here, these chains
have time to relax only partially: only the chain
portions that could escape from the initial, “reflected”
reptation tube are finally really able to cross the
interface. In average, these relaxed portions have a
contour length given by Ssina (eq 7) and contain a
number p of monomers p = Sgna/a = Leina?/@2. Moreover,
because of their random shape, each of the relaxed
portion crosses the interface several times (and not just
once as represented, for the sake of pictorial clarity, in
Figures 2 and 3). As a consequence, when the reaction
occurs and divides all chains into segments of N
monomers, a given chain near the interface can, through
its relaxed portions, find itself with several such seg-
ments bridging the interface. In other words, a given
chain may contribute, after reaction, to several connec-
tors for the adhesion, and this is why the density o of
chains crossing the interface (eq 8) differs from the
density of connectors & which is involved in the Lake
and Thomas formula for the adhesion energy G (eq 9).

We thus have to find out which relation holds between
o and ¢, and for that purpose, the question that must
be answered is the following: considering a relaxed
chain portion (with p = Lgna?a@2 monomers) which
crosses the interface, how many connectors of fi = N,
monomers does it provide after reaction?

The most convenient method is to divide the polymer
chains into “blobs”, which each correspond to a chain
segment of N. monomers. Such blobs have a (Gaussian)
radius R, = aN:2. We may now think on the scale of
blobs: all relaxed chain portions, with p monomers, are
seen as made with p/N; blobs. The idea to find the
number of connectors is then simple: we look at the
spatial conformation of each chain portion (of blobs) and
count how many blobs intersect the interface. Each of
these blobs bridges the interface and, accordingly, must
count for one connector. Now, counting the number of
such intersections is possible at the scaling law level:
it can be shown that if we cut through a random walk
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of g links with a virtual plane (passing through the
origin of the walk), that plane is intersected an average
of g2 times. In our case, each relaxed portion of
interfacial chain contains p/N. blobs and therefore
intersects the interface (p/N¢)¥2 times. Thus, each
interfacial chain, through its relaxed portion, provides
(p/N¢)¥2 connectors.

The density of connectors G is then simply obtained
from the interfacial chain density as 6 = o(p/N)Y2.
Substituting with the value p = Lina?/a?, we finally find
that the density of connectors & is given by ¢ = oLgina/
(av/N¢), which was precisely the formula used in the
main text to establish eq 12.
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