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Abst rac t .  We present here some general features of sand heaps and of dunes. 
We mainly discuss avalanche flows, using a modified version of the equations of 
Bouchaud et al., which might be valid for thick avalanches. 

1 I n t r o d u c t i o n  

Granular materials represent a major object of human activities: as measured 
in tons, the first material manipulated on earth is water ; the second is 
granular mat ter  (Duran 1996). 

This may show up in very different forms : rice, corn, powders for con- 
struction (the clinkers which will turn into concrete), pharmaceuticals . . . .  
In our supposedly modern age, we are extraordinarily clumsy with granular 
materials. Changing the size, for instance, is difficult: crushing a granular 
system spends an unreasonable amount of energy, and also leads to an ex- 
tremely wide distribution of sizes. Transporting a granular material is not 
easy: sometimes it flows like an honest fluid, but sometimes (in hoppers) it 
may get stuck: the reopening procedures are complicated -and often danger- 
ous. 

Even storage is a problem. The contents of bags can clump. Silos can 
explode, because of two features : 

a) Fine powders of organic materials in air often achieve the opt imum 
ratio of organic/ambient oxygen for detonations. 

b) Most grains, when transported, acquire charge by collisions (tribo elec- 
tricity): high voltages build up, and create sparks. 

From a fundamental point of view, granular systems are also very special. 
The general definition is based on size. We talk of particles which are large 
enough for thermal agitation to be negligible. Granular mat ter  is a zero tem- 
perature system. In practice, Brownian motion may be ignored for particles 
larger than on micrometer: this is our threshold. 

A heap of grains is metastable: ideally, on a flat horizontal support, it 
should spread into a monolayer (to decrease its gravitational energy). But 
it does not! It can be in a variety of frozen states, and the detailed stress 
distribution, inside the heap, depends on sample history. The dynamics is 
also very complex: our vision of avalanches is presented in section 2 to 4 -but 
is probably naive and incomplete. 



Avalanches of Dry Sand 359 

Not only we do have a great variety of grains: but also a great variety of 
interactions, commanding the adhesion and the friction between grains. For 
instance, during dry periods, the grains of sand in a dune have no cohesion, 
and under the action of wind, the dune moves (Bagnold 1941). In more humid 
intervals, the grains stick together through minute humidity patches, and they 
are not entrained by the wind : the dunes stop, thus relieving the plantations 
from a serious threat. In the present text, we shall concentrate on dry systems, 
with no cohesion, which give us a relatively well defined model system. 

2 A v a l a n c h e  P r o b l e m s  

2.1 T h e  C o u l o m b  V i e w  

C.A. Coulomb (who was at the time a military engineer) noticed that  a gran- 
ular system, with a slope angle 0, larger than a critical value 0m~×, would 
be unstable. He related the angle 0m~× to the friction properties of the ma- 
terial. For granular materials, with negligible adhesive forces, this leads to 
tgOm~x = #i,  where Pi is a friction coefficient. The instability generates an 
avalanche. What  we need is a detailed scenario for the avalanche. 

We note first that the Coulomb argument is not complete: a) it does not 
tell us at what angle 0m~× + ~ the process will actually start  b) it does not tell 
us which gliding plane is preferred among all these of angle 0m~x) as shown 
on Fig. 1. 
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Fig. 1. For a general introduction to granular materials, see J. Duran "Poudres et 
grains" (Eyrolles, Paris,1996). 
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I shall propose an answer to these questions based on the notion of a 
characteristic size ( in the granular material. 

1) Simulations and experiments indicates that  the forces are not uniform 
in a granular medium, but that there are force paths conveying a large fraction 
of the force. These paths have a certain mesh size ~, which is dependent on the 
grain shapes, on the friction forces between them, etc. but which is typically 

,-~ 5 to 10 gram diameters d. 
2) We also know that,  under strong shear, a granular material can display 

slip bands. The detailed geometry of these bands depends on the imposed 
boundary conditions. But the minimum thickness of a slip band appears to 
be larger than d. We postulate that the minimumsize coincides with the mesh 
size ~. 

We are then able to make a plausible prediction for the onset of the 
Coulomb process: the thickness of the excess layer must be of order (; and 
the excess angle ~ must be of order ~/L, where L is the size of the free surface. 

Thus, at the moment of onset, our picture is that  a layer of thickness -,- 
starts to slip. It shall then undergo various processes: (i) the number of grains 
involved shall be fluidized by the collisions on the underlying heap (ii) it shall 
be amplified because the rolling grains destabilize some other grains below. 
The steady state flow has been studied in detailed simulations. It shows a 
sharp boundary between rolling grains and immobile grains: this observation 
is the starting point of most current theories. 

The amplification process was considered in some detail by Bouchaud et 
al in a classic paper of 1994 (referred to here at BCRE (Bouchaud et al. 1994; 
Bouchaud and Cates 1997),(Gennes 1997). It is important  to realise that,  if 
we start an avalanche with a thickness ( of rolling species, we rapidly reach 
much larger thicknesses R : in practice, with macroscopic samples, we deal 
withthick avalanches (R >>  ~). We are mainly interested in these regimes 
-which, in fact, turn out to be relatively simple. 

2.2 M o d i f i e d  B C R E  E q u a t i o n s  [4] 

BCRE discuss surface flow on a slope of profile h(x, t) and slope tgO ~_ 0 = 
Oh/Ox, with a certain amount R(x,t)  of rolling species (Fig. 2). In Ref. 
(Bouchaud et al. 1994; Bouchaud and Cates 1997), the rate equation for 
the profile is written in the form: 

Oh 
- ~  = 7R(O,~ - O) (+ diffusion terms) (1) 

This gives erosion for 0 > 0,~, and accretion for 0 < 0,~. 
We call 0,~ the neutral angle. This notation differs from BCRE who called 

it0r (the angle of repose). Our point is that different experiments can lead to 
different angles or repose, not always egal to 0n. 

For the rolling species, BCRE write: 
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Fig. 2. The basic assumption of the BCRE picture is that there is a sharp dis- 
tinction between immobile grains with a profile h(x, t) and rolling grains of density 
R(x, t). R is measured in units of "equivalent height": collision processes conserve 
the sum h + R. 

OR Oh OR 
Ot - 0~ + v-~-x (+ diffusion terms) , (2) 

where 3' is a characteristic frequency, and v a flow velocity, assumed 
to be non vanishing (and approximately constant) for 0 ~ 0,~. For simple 
grain shapes (spheroidal) and average levels of inelastic collisions, we expect 
v ~ 3"d ..~ (gd) 1/2, where d is the grain diameter  and g the gravitat ional 
acceleration. Eq. (2) gives Oh/Ot at as linear in R: this should hold at small 
R, when the rolling grains act independently. But, when R > d, this is not 
acceptable. Consider for instance the "uphill waves" mentioned by BCRE, 
where R is constant: Eq. (1) shows that  an accident in slope moves upward, 
with a velocity Vup = 3'R. It is not natural  to assume that  Vup can become 
very large for large R. 

This lead us (namely T. Boutreux, E. Raphafil, and myself) (Boutreux et 
al. to be published) to propose a modified version of BCRE, valid for flows 
which involve large R values, and of the form: 

Oh 
57 = vup(0, - 0) (R > ~ ) ,  (3) 

where Vup is a constant, comparable to v. We shall now see the conse- 
quences of this modification. 
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Remark: in the present problems, the diffusion terms in Eq. (2) turn out 
to be small, when compared to the convective terms (of order d/l, where L 
is the size of the sample) : we omit them systematically. 

2.3 A S i m p l e  C a s e  

A simple basic example (Fig. 3) is a two dimensional silo, fed from a point at 
the top, with a rate 2Q, and extending over a horizontal span 2L: the height 
profile moves upward with a constant velocity Q/L. The profiles were already 
analysed within the BCRE equations (2,3). With the modified version, the 
R profile stays the same, vanishing at the wall (x = 0) : 

2 0  
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Fig. 3. Feeding of a two dimensional silo with a flux Q over a length L, leading to 
a growth velocity w(z) = Q/L. 

R = - ~ - Q ,  (4) 
L v  

but the angle is modified and differs from the neutral angle: setting Oh/Ot = 
Q/L,  we arrive at: 

en - e - Q (Q > v~) . (5) 
Lvnp 

Thus, we expect a slope which is now dependent on the rate of filling: this 
might be tested in experiments or in simulations. 
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3 Downhill and Uphill Motions 

Our starting point is a supercritical slope, extending over a horizontal span L 
with an angle 0 = 0rn~x +e (Fig. 1). Following the ideas of section 1, the excess 
angle e si taken to be small (of order ~/L). It will turn out that  the exact 
values of e is not important:  as soon as the avalanche starts, the population 
of rolling species grows rapidly and becomes independent of ~ (for c small) : 
this means that  our scenarios have a certain level of universality. The crucial 
feature is that  grains roll down, but profiles move uphill : we shall explain 
this in detail in the next paragraph. 

3.1 W a v e  E q u a t i o n s  a n d  B o u n d a r y  C o n d i t i o n s  

It is convenient to introduce a reduced profile 

h(x , t )  = h -  O~x . (6) 

Following BCRE, we constantly assume that  the angles t~ are not very 
large, and write tgO -~ 0: this simplifies the notation. Ultimately, we may 
write Eqs. (2) and (3) in the following compact form: 

OR Of, OR 
a--t- = v~p ox + v ~ x  (7) 

a~ a~ 
a ~ -  V u p ~ .  (8) 

Another important  condition is that we must have R > 0. If we reach 
R = 0 in a certain interval of x, this means that the system is locally frozen, 
and we must then impose: 

0k 
- -  = 0 . (9)  
at 

One central feature of the modified Eqs. (7, 8) is that,  whenever R > 0, 
they are linear. The reduce profile h is decoupled from R, and follows a very 
simple wave equation: 

h(x, t) ~- w(x - rapt) , (10) 

where w is an arbitrary function describing uphill waves. 
It is also possible to find a linear combination of R(x,  t) and h(x, t) which 

moves downhill. Let us put: 

R(x , t )  + Ah(x,t) = u(x, t )  , (11) 

where A is an unknown constant. Inserting Eq. (11) into Eq. (2), we arrive 
at : 

Ou Ou O~ (12) 
0t v ~  [~up - ~ (~u~ + ~)] ~ • 

Thus, if we choose: 
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I - Vup , (13) 
V + Vup 

we find that  u is ruled by a simple wave equation, and we may set 

~(~,~) = ~(~ + vt)  . (14)  

We can rewrite Eq. (11) in the form: 

R(x , t )  = u(x + vt) - A w(z  - Vupt) - (15) 

Eqs. (10) and (15) represent the normal solution of our problem in all 
regions where R > 0. This formal solution leads in fact to a great variety of 
avalanche regimes. 

3.2 C o m p a r i s o n  o f  U p h i l l  a n d  D o w n h i l l  V e l o c i t i e s  

Our equations introduce two velocities: one downhill (v) and one uphill (Vup). 
How are they related ? The answer clearly depends on the precise shape 
(and surface features) of the grains. Again, if we go to spheroidal grains and 
average levels of inelasticity, we may try to relate Vup and v by a naive scaling 
argument.  Returning to Eq. (1) and (3) for the rate of exchange between fixed 
and rolling species, we may interpolate between the two limits (R < ~ and 
R >  ~): 

0 ,  
c~-t ---- 7~(0 - O,) f  (16) 

where the unknown function f has the limiting behaviours: 

f ( x  ~ O) = x 

/ f ( > >  1) = Too = constant 
(17) 

This corresponds to Vup 
t o :  

= fooT~. Since we have assumed v ,,~ 7 d, we are led 

Vup/V ~ f ~ / d .  (18) 

If, even more boldly, we assume that  f ~  ~ 1, and since ~ is somewhat  
larger than the grain size, we are led to suspect that  Vup may be larger than 
~3. 
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3.3 C lo se d  Versus  O p e n  S y s t e m s  

Various types of boundary conditions can be found for our problems of 
avalanches : 

a) At the top of the heap, we may have a situation of zero feeding (R = 0). 
But we can also have a constant injection rate Q fixing R = Q / v .  This 
occurs in the silo of Fig. 3. It also occurs at the top of a dune under a 
steady wind, where saltation takes place on the windward side (2), imposing 
a certain injection rate Q, which then induces a steady state flow on the 
steeper, leeward side. 

b) At the bo t tom end, we sometimes face a solid wall -e.g. in the silo; 
then we talk about a closed cell, and impose R = 0 at the wall. But in certain 
experiments, with a rotat ing bucket, the bo t tom end is open (Fig. 4). Here, 
the natural  boundary condition is h = constant at the bo t tom point, and R is 
not fixed. Both cases are discussed in Ref. (Boutreux et al. to be published). 
Here, we shall simply describe some features for the closed cell system. 

L - -  - k - - - -  I 

x 
x 

x x 

\ 

a b 

Fig. 4. Two types of avalanches: a) open cell b) closed cell. 

3.4 S c e n a r i o  fo r  a C l o s e d  Cel l  

The successive "acts" in the play can be deduced from the wave equations (10, 
15) plus initial conditions. Results are shown in Figs. (5-9). During act I, a 
rolling wave starts from the top, and an uphill wave starts from the bo t tom 
end. In act II, these waves have passed each other. In act III,  one of the 
waves hits the border. If v+ > v, this occurs at the top. From this moment ,  
a region near the top gets frozen, and increases in size. If v+ < v, this occurs 
at the bot tom:  the frozen region starts there and expends upwards. In both 
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Fig. 5. Closed cell " act I". The slope in the bottom region is described by Eq. 
(40). 

cases, the final slope O] is not equal to the neutral angle 0,~, but  is smaller: 
0] : 0 n - ~ = 0ma x -- 26. 

3.5 D i s c u s s i o n  

1) The determination of the whole profiles h(x, t) on an avalanche represents 
a rather complex experiment (Haeger et al. 1988). But certain simple checks 
could easily be performed. 

a) With an open cell, the loss of material measured by R(O, t) is easily 
obtained, for instance, by capacitance measurement (2). The predictions of 
Ref. (Boutreux et al. to be published) for this loss are described on Fig. 
9. R(O, t )  rises linearly up to a maximum at t -= L/v ,  and then decreases, 
reaching 0 at the final time L(1/v  + 1/Vup). The integrated amount  is: 

/ 1 ( 2 1 )  
M ~  R(0,~)dt= 2~6L2 + (10) 
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Fig. 6. Closed cell" act II". The sketch has been drawn for Vup > v. (When Vup < v, 
the slope OR/Ox, in the central region, becomes positive). 

Unfortunately, the attention in Ref. (Haeger et al. 1988) was focused 
mainly on the reproducibility of M,  but (apparently) the value of M and the 
shape of R(0, t) were not analysed in detail. 

b) With a closed cell, a simple observable is the rise of the height at the 
bo t tom h(0, t): this is predicted to increase linearly with time: 

h(O, t) = ~(0,  t) = 5v+t  , (2o)  

up to t = L/v+,  and to remain constant after. 
Similar measurements (both for open or closed cells) could be done at the 

top point, giving h(L,  t).  
c) A crucial parameter  is the final angle 0/. In our model, this angle is 

the same all along the slope. For an open cell, it is equal to the neutral angle 
0n. For a closed cell, it is smaller: O/ = On - 5. 

Thus the notion of an angle of repose is not universal! The result O/ = 
0n - 5 was already predicted in a note (Boutreux and de Gennes), where we 
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Fig. 7. Closed cell " act III". The case (Vup > v). A frozen patch grows from the 
top. 

proposed a qualitative discussion of thick avalanches. The dynamics (based 
on a simplified version of BCRE Eqs.) was unrealistic -too fast- but the 
conclusion on O] was obvious: in a closed cell ,  the material  which starts  at 
the top, has to be stored at the bo t tom part,  and this leads to a decrease in 
slope. 

d) One major  unknown of our discussion is the ratio vup/v. We already 
pointed out that  this may differ for different types of grains. Quali tat ive 
observations on a closed cell would be very useful here : if in its late stages 
(act Il l)  the avalanche first freezes at the top, this means Vup > v. If it freezes 
from the bo t tom,  vup must  be < v. 

2) Limitations of the present model: 

a) Our description is deterministic: the avalanche starts automatical ly  at 
0 • 0maxi and sweeps the whole surface. In the open cell systems (with 
slowly rotat ing drums) one does find a nearly periodic set of avalanche 
spikes, suggesting that  0m~x is well defined. But the ampli tude (and the du- 
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Fig. 8. Closed cell " act III" (vup < v). Here a frozen patch grows from the bottom. 

ration) of these spikes varies Boutreux and de Gennes: it may be that  some 
avalanches do not s tar t  from the top. We can only pretend to represent the 
full avalanches. 

Wha t  is the reason for these statistical features? (i) Disparity in grain size 
tends to generate spatial in inhomogeneities after a certain number of runs 
(in the simplest cases, the large grains roll further down and accumulate near 
the walls). (ii) Cohesive forces may be present: they tend to deform the final 
profiles, with a 0( , )  which is not constant in space. (iii) Parameters  like Om 
(or 0n ) may depend on sample history. 

b) Regions ofsmallR. For instance, in a closed cell, R(x,t) ---+ 0 for x --, O. 
A complete solution in the vicinity of R = 0 requires more complex equations, 
interpolating between BCRE and our linear set of equations, as sketched in 
Eq. (16). Boutreux and Raphael have indeed investigated this point. It does 
not seem to alter significantly the macroscopic results described here. 

c)Ambiguities in On. When comparing thick and thin avalanches, we as- 
sumed that  0~ is the same for both: but there may, in fact, be a small dif- 
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Fig. 9. Flux profile predicted at the bottom of an open cell. 

ference between the two. Since most practical situations are related to thick 
avalanches, we tend to focus our attention on the "thick" case -but this pos- 
sible distinction between thick and thin should be kept in mind. 
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