
Capillary-gravity waves generated by a sudden object motion
F. Closa,1 A. D. Chepelianskii,2 and E. Raphaël1
1Laboratoire Physico-Chimie Théorique, UMR CNRS GULLIVER 7083, ESPCI,
10 rue Vauquelin, 75005 Paris, France
2Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud,
Bâtiment 510, 91405 Orsay, France

�Received 20 January 2010; accepted 21 April 2010; published online 27 May 2010�

We study theoretically the capillary-gravity waves created at the water-air interface by a small object
during a sudden accelerated or decelerated rectilinear motion. We analyze the wave resistance
corresponding to the transient wave pattern and show that it is nonzero even if the involved velocity
�the final one in the accelerated case, the initial one in the decelerated case� is smaller than the
minimum phase velocity cmin=23 cm s−1. These results might be important for a better
understanding of the propulsion of water-walking insects where accelerated and decelerated motions
frequently occur. © 2010 American Institute of Physics. �doi:10.1063/1.3430004�

I. INTRODUCTION

If a body �such as a boat or an insect� or an external
pressure source moves at the free liquid-air interface, it gen-
erates capillary-gravity waves. These are driven by a balance
between the liquid inertia and its tendency, under the action
of gravity and under surface tension forces, to return to a
state of stable equilibrium.1 For an inviscid liquid of infinite
depth, the dispersion relation of capillary-gravity waves, re-
lating the angular frequency � to the wavenumber k, is given
by �2=gk+�k3 /�, where � is the liquid-air surface tension,
� is the liquid density, and g is the acceleration due to
gravity.2 The energy carried away by the waves is felt by the
body �or the pressure source� as a drag Rw, called the
wave resistance.3 In the case of boats or ships, the wave
resistance has been well studied in order to design hulls
minimizing it.4 The case of objects that are small compared
to the capillary length �−1=�� / ��g� has been considered
only recently.5–11

In the case of a disturbance moving at constant velocity
V= �V� on a rectilinear trajectory, the wave resistance Rw is
zero for V�cmin, where cmin= �4g� /��1/4 is the minimum of

the wave velocity c�k�=��k� /k=�g /k+�k /� for capillarity
gravity waves.3,5,12 Effectively, in the frame moving with
that object, the problem must be stationary. That is true
only if the radiated waves have a phase velocity c�k� equal
to the object’s velocity V. If V�cmin, no solutions exist,
hence no waves, and the wave resistance is zero. For
water with �=73 mN m−1 and �=103 kg m−3, one has
cmin=0.23 m s−1 �at room temperature�. It was recently
shown by Chepelianskii et al.13 that no such velocity thresh-
old exists for a steady circular motion, for which, even for
small velocities, a finite wave drag is experienced by the
object. Here we consider the case of a sudden accelerated or
decelerated rectilinear motion and show that the transient
wave pattern leads to a nonzero wave resistance even if the
involved velocity �the final one for the accelerated case, the
initial one for the decelerated case� is smaller than the mini-
mum phase velocity cmin=23 cm s−1. In order to avoid the

problem of the relocation of the contact line,10,11 we
have replaced the partially submerged object by a external
pressure distribution. The physical origin of the results
presented here is similar to the Cherenkov radiation emitted
by accelerated �or decelerated� charged particles14,15 and
has also been recently discussed in the context of the re-
sponse of a floating ice sheet to an accelerating line load16

and in the context of water waves generated by a moving
bottom.17,18

II. EQUATIONS OF MOTION

We consider an inviscid, deep liquid with an infinitely
extending free surface. To locate a point on the free surface,
we introduce a vector r= �x ,y� in the horizontal plane asso-
ciated with the equilibrium state of a flat surface. The motion
of the disturbance in this plane induces a vertical displace-
ment ��r , t� �Monge representation� of the free surface from
its equilibrium position.

Assuming that the liquid equations of motion can be
linearized �in the limit of small wave amplitudes�, one has13

�2�̂�k,t�
�t2 + ��k�2�̂�k,t� = −

kP̂ext�k,t�
�

, �1�

where P̂ext�k , t� and �̂�k , t� are the Fourier transforms of the
pressure distribution and the displacement, respectively.19 In
what follows, we will assume that the pressure distribution is
axisymmetric around the point r0�t� �corresponding to the

disturbance trajectory�. P̂ext�k , t� can then be written as

P̂ext�k�e−ik·r0�t�.

A. Uniform straight motion

Let us first recall the results previously obtained in the
case of a uniform straight motion.3,12,20,21 Such a motion cor-
responds to r0�t�= �−Vt ,0�, where V is the constant velocity
of the disturbance.

Equation �1� then becomes
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�2�̂�k,t�
�t2 + ��k�2�̂�k,t� = −

kP̂ext�k�eiVkxt

�
. �2�

The above equation corresponds to the equation of an har-
monic oscillator forced at angular frequency Vkx. We can
solve it by looking for solutions with a time- dependence of
the form eiVkxt, leading to

�̂�k,t� = −
kP̂ext�k�

����k�2 − �Vkx�2�
eiVkxt. �3�

Following Havelock,3 the wave resistance Rw experienced
by the moving disturbance is given by

Rw = − i� � dkx

2�

dky

2�
k�̂�k,t�P̂��k,t� . �4�

This expression for the wave resistance represents the total
force exerted by the external pressure on the free surface
Rw=��dxdyPext�r , t����r , t� written in Fourier space. Using
Eq. �3� and integrating over the angular variable, one
obtains5

Rw = �
0

� dk

2�

kP0
2

�
e−2bk 	�V − c�k��

V2�1 − �c�k�/V�2
ux, �5�

where 	�x� is the Heaviside step function and ux is the unit
vector along the x-axis. The behavior of Rw as a function of
the disturbance velocity V is illustrated in Fig. 1. There we
have assumed a pressure disturbance of Lorentzian form with

a Fourier transform P̂ext�k�= P0e−bk, where b is the object
size �set to b=0.1�−1�. This choice will be taken for the
figures throughout this work. The wave resistance is equal to
zero for V�cmin and presents a discontinuous behavior at
V=cmin �see Refs. 8 and 13 for a more complete discussion�.

B. Accelerated straight motion

We now turn to the case where the disturbance—initially
at rest—is suddenly set to a uniform motion �characterized
by a constant velocity V� at time t=0. The corresponding
trajectory is given by r0�t�=−Vt	�t�ux. As long as the pertur-
bation does not move �i.e., for t�0�, the wave resistance is

equal to zero. In order to calculate the wave resistance for
t
0, we solve Eq. �2� along with the initial conditions

�̂�k , t=0�=0 and ��̂�k , t=0� /�t=0, yielding

�̂�k,t� = − �
0

t

d�
kP̂ext�k�
��k��

e−ikr0��� sin���k��t − ��� . �6�

Equation �4� then leads to the following expression for the
wave resistance:

Rw�t� = �
0

� dk

2�
�

0

t

du
k3�P̂ext�k��2

���k�
sin���k�u�J1�kVu�ux,

�7�

where J1�x� is the first Bessel functions of the first kind. In
the long time limit, one has22

lim
t→�
�

0

t

sin���k�u�J1�kVu�du =
��k�	�V − c�k��

V2k2�1 − �c�k�/V�2
, �8�

and therefore the wave resistance, Eq. �7�, converges to the
uniform straight motion result, Eq. �5�. The behavior of
Rw�t� is represented in Fig. 2 for different values of the dis-
turbance velocity and will be discussed in detail in Sec. III.

C. Decelerated straight motion

Let us now consider the case of a disturbance moving
with a constant velocity V for t�0 and suddenly set and
maintained at rest for t
0. This corresponds to the follow-
ing trajectory: r0�t�=−Vt	�−t�ux. As long as t�0, the wave
resistance Rw is given by the uniform straight motion result,
Eq. �5�. In order to calculate the wave resistance for t
0, we
solve Eq. �2� along with the initial conditions
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FIG. 1. �Color online� Wave resistance Rw �in units of P0
2� /�� as a function

of the reduced velocity V /cmin for a uniform straight motion �see Eq. �5��.
The pressure disturbance is assumed to be a Lorentzian, with a Fourier

transform P̂ext�k�= P0e−bk, where b is the object size �set to b=0.1�−1�.
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FIG. 2. �Color online� The wave resistance Rw �in units of P0
2� /�� is shown

as a function of the reduced time cmin�t for an accelerated motion with
different U=V /cmin �see Eq. �7��. Panels �a�, �b�, �c� and �d� correspond to
reduced velocities U=1.5, 1.1, 0.9, and 0.5, respectively.
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�̂�k,t = 0� =
− kP̂ext�k�

����k�2 − �Vkx�2�
�9�

and

� �̂

�t
�k,t = 0� =

− kP̂ext�k��iVkx�
����k�2 − �Vkx�2�

�10�

�where we have used Eq. �3��. This leads to

�̂�k,t � 0� = 	 kP̂ext�k�
���k�2 −

kP̂ext�k�
����k�2 − �Vkx�2�


cos���k�t�

−
k�iVkx�P̂ext�k�

����k�2 − �Vkx�2�
sin���k�t�

��k�
−

kP̂ext�k�
���k�2 .

�11�

Equation �4� then leads to the following expression for the
wave resistance:

Rw�t� = �
0

� dk

2�

k�P̂ext�k��2

�V2 cos���k�t�
	�V − c�k��

�1 − 	 c�k�
V


2
ux

+ �
0

� dk

2�

k�P̂ext�k��2

�V2 sin���k�t�


� V

c�k�
−

	�c�k� − V�

�	 c�k�
V


2

− 1�ux. �12�

In the long time limit �t→��, the Riemann–Lebesgue
lemma,23 for a Lebesgue integrable function f

lim
t→�
� f�x�eixtdx = 0 �13�

permits to determine the limit: the wave resistance given by
Eq. �12� converges to 0 for t→�, as expected. The behavior
of Rw�t�=Rw�t� ·ux is represented in Fig. 3 for different

values of the disturbance velocity and will be discussed in
detail in section the next section �Sec. III�. The negative
values of Rw�t� that one may observe in the decelerated case
correspond to a drag force acting on the disturbance along
the negative x-axis �the disturbance, maintained at rest, is
continually interacting with the gravity-dominated waves
emitted at t�0 �see below�; hence the changes in the sign of
Rw�t� in Fig. 3�.

III. RESULTS AND DISCUSSION

A. Accelerated straight motion

Figures 2 and 3 represent the behavior of the wave re-
sistance for the accelerated and the decelerated cases, respec-
tively. In order to get a better understanding of the behavior
of Rw=Rw ·ux, we will perform analytic expansions of Eq.
�7� and Eq. �12�, respectively. Let us start with the acceler-
ated case, Eq. �7�. Since one has the product of two oscillat-
ing functions, sin���k�u� and J1�kVu�, one can use a station-
ary phase approximation.24 The sine function oscillates with
a phase �1=��k�u, whereas the Bessel function J1 oscillates
with a phase �2=Vku. Their product has thus two oscillating
terms, one with a phase �−=�1−�2 and the other with a
phase �+=�1+�2. According to the stationary phase ap-
proximation, the important wavenumbers are given by
d�− /dk=0 and d�+ /dk=0. The latter equation does not ad-
mit any real solution, and the corresponding contribution to
the wave resistance decreases exponentially and can be ne-
glected. The equation d�− /dk=0 leads to �cg�k�−V�u=0,
where cg�k�=d��k� /dk is the group velocity of the capillary-
gravity waves.3 This equation has solutions only if V
�min�cg�k��= �3�3 /2−9 /4�1/4cmin
0.77cmin. When this
condition is satisfied, two wavenumbers are selected: kg

�mainly dominated by gravity� and kc �mainly dominated by
capillary forces�, with kg�kc �see Fig. 4�. If these two wave-
numbers are sufficiently separated �that is, for velocities not
too close to 0.77cmin�, one then finds that in the long time
limit Rw oscillates around its final value as
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FIG. 3. �Color online� The wave resistance Rw �in units of P0
2� /�� is shown

as a function of the reduced time cmin�t for a decelerated motion with
different reduced velocities U=V /cmin �see Eq. �12��. Panels �a�, �b�, �c�, and
�d� correspond to reduced velocities U=1.4, 1.1, 0.98, and 0.7, respectively.
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the intersection between the curve c�k� /cmin and the line U=V /cmin. kg and
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tion between the curve cg�k� /cmin and the line U=V /cmin. Analytical expres-
sions of kc and kg can be given but are rather lengthy.
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Rw�t� = Rw��� +
1

2���V

kc
5/2�P̂ext�kc��2

��kc���d2�

dk2 �kc��
cos��ct�

�ct

+
1

2���V

kg
5/2�P̂ext�kg��2

��kg���d2�

dk2 �kg��
sin��gt�

�gt
, �14�

where Rw��� is given by Eq. �5� �and is equal to zero if
V�cmin�, �c= �c�kc�−cg�kc��kc, and �g= �c�kg�−cg�kg��kg.

Therefore, even if the disturbance velocity V is smaller
than cmin, there exists a transient nonzero wave resistance25

decreasing as 1 / t �for V
0.77cmin�.
We obtain a good agreement between the numerical cal-

culation of Eq. �7� and the analytical approximation, Eq.
�14�, as shown in Fig. 5. Note that the oscillations displayed
by the wave resistance are characterized by a period 2� /�c

or 2� /�g that diverges as V approaches cmin. In the particu-
lar case where V�cmin, Eq. �14� reduces to

Rw�t� = Rw��� +
1

29/2�

�cmin
2 �P̂ext�kg��2

�V5t
sin	 cmin

2 �t

8V



−
23/2

�

��P̂ext�kc��2

cmin
2 �Vt

cos	 8V3�t

27cmin
2 
 . �15�

Let us now give a physical interpretation for the wave resis-
tance behavior as described by Eq. �14�: during the sudden
acceleration of the disturbance �taking place at t=0�, a large
range of wavenumbers is emitted. Waves with wavenumbers
k such that cg�k�
V will move faster than the disturbance
�which moves with the velocity V�, whereas waves with
wavenumbers k such that cg�k��V will move slower. The
main interaction with the moving disturbance will therefore

correspond to wavenumbers satisfying cg�k�=V, that is, to kc

and kg �hence their appearance in Eq. �14��. Due to the
Doppler effect, the wave resistance Rw �which is the force
exerted by the fluid on the moving disturbance� oscillates
with an angular frequency �c�k�−V�k, hence the appearance
of �c and �g in Eq. �14�. Note that in the case of
V�0.77cmin, the wave resistance, Eq. �7�, is nonzero and
decreases exponentially with time �see Fig. 2�d��.

In order to get a better physical picture of the generated
wave patterns, we have also calculated numerically the tran-
sient vertical displacement of the free surface ��r , t� in the
accelerated case �Eq. �6��. The corresponding patterns �as
seen in the frame of the moving object� are presented in Figs.
6–8 for different reduced times cmin�t �1, 10, and 50, respec-
tively� and a final velocity V=1.1cmin. At cmin�t=1, the per-
turbation of the free surface is very localized around the
disturbance �close to the same one obtained by a stone’s
throw�. At cmin�t=10, some capillary waves can already be
observed at the front of the disturbance. At cmin�t=50, one
observes a pattern that prefigure the steady pattern of the
uniform straight motion �see Fig. 8 and Ref. 12, page 470�.
These predictions concerning the wave pattern might be
compared to experimental data using the recent technique of
Moisy et al.26
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FIG. 5. �Color online� The wave resistance Rw �in units of P0
2� /�� is shown

as a function of the reduced time cmin�t for an accelerated motion with
different U=V /cmin �see Eq. �7��. Panels �a�, �b�, and �c� correspond to
reduced velocities U=1.5, 1.1, and 0.9, respectively. The solid lines are
obtained by a numerical integration of Eq. �7�. The dashed lines correspond
to the asymptotic expansion given by Eq. �14�.

FIG. 6. �Color online� Accelerated straight motion �final velocity
V=1.1cmin�: transient vertical displacement �in units of P0� / ��cmin

2 �� of the
free surface at tcmin�=1 obtained by inverse Fourier transform of Eq. �6�.
Note that the surface disturbance is localized around the object and close to
the one obtained by a stone thrown in water.

FIG. 7. �Color online� Accelerated straight motion �final velocity
V=1.1cmin�: transient vertical displacement �in units of P0� / ��cmin

2 �� of the
free surface at tcmin�=10 obtained by inverse Fourier transform of Eq. �6�.
One can already see ahead of the disturbance the waves associated with k1,
while the ones associated to k2 are less well formed.
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B. Decelerated straight motion

Let us now turn to the case of the decelerated motion
described by Eq. �12�. We first will assume that V
cmin. In
that case, the denominators appearing in the integrals vanish
for k such that c�k�=V, that is, for k1=��U2−�U4−1�
�mainly dominated by gravity� and k2=��U2+�U4−1�
�mainly dominated by capillary forces� as shown in Fig. 4,
where U=V /cmin. Both wavenumbers contribute to the wave
resistance. Using the stationary phase approximation, one
then finds that in the long time limit, Rw oscillates as
cos�Vk1t+� /4� /�t. More precisely, one has �for large t�

Rw�t� =
1

��V���

k1
3/2�P̂ext�k1��2

��k2 − k1�cg�k1�t
cos�Vk1t + �/4� . �16�

The wave resistance displays oscillations that are character-
ized by a period of 2� / �Vk1�. Figure 9 shows the good
agreement between the numerical calculation of Eq. �12� and
the analytical approximation, Eq. �16�, for large times
�cmin�t
10�. Again one can give a simple physical interpre-
tation of the wave resistance, Eq. �16�. The period of the
oscillations is given by 2� / �Vk1� and depends only on the
wavenumber k1 �mainly dominated by gravity� even in the
case of an object with a size b much smaller than the capil-
lary length. This can be understood as follows. For t�0, the
disturbance moves with a constant velocity V and emits
waves with wavenumber k1 and waves with wavenumber k2

�mainly dominated by capillary forces�. The k1-waves lag
behind the disturbance, while the k2-waves move ahead of it.
When the disturbance stops at t=0, the k2-waves keep mov-
ing forward and do not interact with the disturbance. How-
ever, the k1-waves will encounter the disturbance and interact
with it, hence the period 2� / �Vk1� of the wave resistance,
Eq. �16�. The 1 /�t decrease in the magnitude of wave resis-
tance in Eq. �16� can be understood as follows. At time
t
0, the disturbance �which is at rest at x=0� is hit by a
k1-wave that has previously been emitted by a distance of
cg�k1�t away from it. The vertical amplitude � of this wave is
inversely proportional to the square root of this distance.
Indeed, as the liquid is inviscid, the energy has to be con-
served, and one thus has ��1 /�cg�k1�t. Since the wave re-
sistance Rw is proportional to vertical amplitude of the wave

�, one recovers that Rw decreases with time as 1 /�cg�k1�t.
In the particular case where V�cmin, Eq. �16� reduces to

Rw�t� =
1

2��

�3/2�P̂ext�kc��2cmin
3

�V11/2�t
cos	�cmin

2

2V
t + �/4
 . �17�

Let us now discuss the case of V�cmin �still considering the
decelerated motion, Eq. �12��. In that case, the wave resis-
tance oscillates �in the long time limit� approximately as

�e−U�1−U4t�cmin /�t�cmin�sin�U3t�cmin+��. More precisely,
one has �for large t�

Rw�t� =� 2

�

�2�P̂ext�k̃��2

�cmin
2

sin�U3cmin�t + ��
��cmint



e−U�1−U4t�cmin

�2�U1/2�1 − U4�1/4�3U4 + 1�1/4 , �18�

where

� = �3/2�arctan��1 − U4/U2�

− �1/2�arctan��1 − U4/�2U2�� �19�

and k̃=��U2+ i�1−U4�. Note that in the case of V�cmin, the
wave resistance, Eq. �18�, also displays some oscillations,
although no waves were emitted at t�0. These oscillations
that have an exponential decay in time might be due to the
sudden arrest of the disturbance. Such oscillations could also
be present in the case of V
cmin but are hidden by the in-
teraction between the k1-waves and the disturbance, which
lead to a much more slower 1 /�t decay.

IV. CONCLUSIONS

In this article, we have shown that a disturbance under-
going a rectilinear accelerated or decelerated motion at a
liquid-air interface emits waves even if its velocity V �the
final one in the accelerated case and the initial one in the
decelerated case, respectively� is smaller than cmin. This cor-

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

(R
w

γ)
/(

P
02

κ)

t cminκ

U=1.4

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

(R
w

γ)
/(

P
02

κ)

t cminκ

U=1.4

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

(R
w

γ)
/(

P
02

κ)

t cminκ

U=1.01

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

(R
w

γ)
/(

P
02

κ)

t cminκ

U=1.01

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

(R
w

γ)
/(

P
02

κ)

t cminκ

U=0.98

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

(R
w

γ)
/(

P
02

κ)

t cminκ

U=0.98

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

(R
w

γ)
/(

P
02

κ)

t cminκ

U=0.7

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

(R
w

γ)
/(

P
02

κ)

t cminκ

U=0.7

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

(R
w

γ)
/(

P
02

κ)

t cminκ

(a) (b)

(c) (d)
U=0.7

FIG. 9. �Color online� The wave resistance Rw �in units of P0
2� /�� is shown

as a function of the reduced time cmin�t for a decelerated motion with
different reduced velocities U=V /cmin �see Eq. �12��. Panels �a�, �b�, �c�, and
�d� correspond to reduced velocities U=1.5, 1.01, 0.98, and 0.7, respec-
tively. The dashed lines correspond to the asymptotic expansion given by
Eq. �16�.
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FIG. 8. �Color online� Accelerated straight motion �final velocity
V=1.1cmin�: transient vertical displacement �in units of P0� / ��cmin

2 �� of the
free surface at tcmin�=50 obtained by inverse Fourier transform of Eq. �6�.
The vertical displacement is already quite similar to the steady-state crest
pattern �full lines� obtained using a stationary phase argument �Ref. 34�.
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roborates the results in Ref. 13. For this purpose, we treat the
wave emission problem by a linearized theory in a Monge
representation. Then, we derive the analytical expression of
the wave resistance and solve it by numerical integration.
Asymptotic expansions permit to extract the predominant be-
havior of the wave resistance. Some vertical displacement
patterns are also calculated in order to shown how the waves
invade the free surface.

The results presented in this paper should be important
for a better understanding of the propulsion of water-walking
insects,27–30 such as whirligig beetles, where accelerated and
decelerated motions frequently occur �e.g., when hunting a
prey or escaping a predator31�. Even in the case where the
insect motion appears as rectilinear and uniform, one has to
keep in mind that the rapid leg strokes are accelerated and
might produce a wave drag even below cmin. The predictions
concerning the wave patterns might be compared to experi-
mental data using the recent technique of Moisy et al.26

It will be interesting to take in our model some nonlinear
effects32 because the waves radiated by whirligig beetles31

have a large amplitude. Recently Chepelianskii et al. derived
a self-consistent integral equation describing the flow veloc-
ity around the moving disturbance.33 It would be interesting
to incorporate this approach into the present study.
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