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Capillary gravity waves: A “fixed-depth” analysis
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PACS. 68.03.Kn – Dynamics (capillary waves).

Abstract. – We study the onset of the wave resistance due to the generation of capillary
gravity waves by a partially immersed moving object in the case where the object is held at
a fixed immersion depth. We show that, in this case, the wave resistance varies continuously
with the velocity, in qualitative accordance with recent experiments by Burghelea et al. (Phys.
Rev. Lett., 86 (2001) 2557).

Introduction. – The dispersive properties of capillary gravity waves are responsible for
the complicated wave pattern generated at the free surface of a still liquid by a disturbance
moving with a velocity V greater than the minimum phase speed Vc = (4gγ/ρ)1/4, where g is
the gravity, γ is the surface tension and ρ the density of the fluid [1]. The disturbance may
be produced by a small object partially immersed in the liquid or by the application of an
external surface pressure distribution [2]. The waves generated by the moving perturbation
propagate momentum to infinity and, consequently, the disturbance experiences a drag R
called the wave resistance [3]. For V < Vc, the wave resistance is equal to zero since, in this
case, no propagating long-range waves are generated by the disturbance [4].

A few years ago, it was predicted that the wave resistance corresponding to a surface
pressure distribution symmetrical about a point should be discontinuous at V = Vc [5]. More
precisely, if F0 is the total vertical force exerted on the fluid surface, the wave resistance is
expected to reach a finite value Rc > 0 for V → V +

c . For an object much smaller than the
capillary length κ−1 =

√
γ/ρg, the discontinuity Rc is given by

Rc =
F 2

0

2
√

2
κ

γ
. (1)

Experimentally, the onset of the wave resistance due to the generation of capillary gravity
waves by a partially immersed moving object was studied recently by two independent groups
[6, 7]. While Browaeys et al. [6] used a flexible wire and found a discontinuous behaviour of
the wave resistance at V = Vc [8], Burghelea et al. [7] used a bead immersed at a fixed depth
and observed a smooth transition.

The discrepancy between the theoretical analysis of [5] and the experimental results of [7]
might be due to the fact that the experimental setup of Burghelea et al. uses a feedback
c© EDP Sciences
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Fig. 1 – We study the behavior of a hydrophobic moving object of characteristic size b immersed at a
depth h. The velocity of the object is V . We decompose the force exerted by the fluid on the object
in a component orthogonal to the free surface (F0) and a component parallel to it (R).

loop to keep the object at a constant depth while the analysis of [5] assumes that the vertical
component F0 of the force exerted by the disturbance on the fluid does not depend on the
velocity V (we might call such an analysis a “fixed force” analysis). In order to check this
proposition, we perform in this letter a “fixed-depth” calculation of the wave drag close to
the onset threshold. A somewhat similar analysis was performed in the large velocity limit by
Sun and Keller [9]. We will show that such a calculation indeed yields a cancellation of the
vertical force at V = Vc, i.e. according to eq. (1), a smoothing of the discontinuity.

Model. – We take the (x, y)-plane as the equilibrium surface of the fluid. The immersed
object exerts a stress at the fluid surface that can be considered equivalent to a pressure field
p [10] that travels over the surface with a velocity V in the x-direction (fig. 1). We assume p̂
(the Fourier transform of p) to be of the form

p̂(kx, ky) = F0φ̂(k), (2)

where k =
√

k2
x + k2

y and φ̂(0) = 1. In this case, p̂ is isotropic [11] and F0 is the total vertical
force exerted on the fluid.

Within the framework of Rayleigh’s linearized theory of capillary gravity waves, the Fourier
transform ξ̂(k) of the free surface displacement ξ(r) is related to the pressure field through [12]

ξ̂(kx, ky) = −F0
k

ρ

(
φ̂(k)

ω2
0(k) − 4ν2k3q + (2νk2 − iV · k)2

)
, (3)

where ω2
0(k) = gk + γk3/ρ is the free dispersion relation, q2 = k2 − ik · V /ν and ν = η/ρ is

the kinematic viscosity of the fluid.
Let us suppose that the object is located at the origin of the moving frame. If h is its

depth, the free surface displacement ξ must be −h under the pinpoint (here we suppose the
object sufficiently hydrophobic and h not to large so that the pinpoint does not pierce the
surface). This leads to the following normalization condition:

ξ(0) =
∫

d2k

(2π)2
ξ̂(k) = −h. (4)

The value of h as a function of F0 can be readily calculated using eqs. (3) and (4):

h = Ξ(V )F0, (5)
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with

Ξ(V ) =
∫

d2k

(2π)2
k

ρ

(
φ̂(k)

ω2
0(k) − 4ν2k3q2 + (2νk2 − iV · k)2

)
. (6)

Finally, the drag-force R is calculated by simply integrating the pressure force over the
free surface [13],

R = −
∫

d2r p(r)∇ξ(r) = −
∫

d2k

(2π)2
ikp̂∗(k)ξ̂(k). (7)

This yields, using the explicit expression (3) for ξ̂,

R = F 2
0 Λ(V ), (8)

with

Λ(V ) =
∫

d2k

(2π)2ρ

(
ikk|φ̂(k)|2

ω2
0(k) − 4ν2k3q2 + (2νk2 − iV · k)2

)
. (9)

According to eq. (8), the integral Λ describes the fixed-force behaviour of the wave resis-
tance. Due to the symmetry of φ̂, Λ is parallel to V and we shall henceforth set Λ = Λu,
where u = V /V is the unit vector parallel to the velocity of the object. The authors of [5]
studied the properties of Λ in the case of a non-viscous fluid for which they showed that

a) Λ = 0 for V < Vc;

b) Λ is discontinuous for V → V +
c , with

lim
V →V +

c

Λ = Λc =
1

2
√

2
κ

γ
; (10)

c) in the large velocity limit

Λ ∼ 2ρV 2

3πγ2
. (11)

In the case of a fixed depth analysis, F0 becomes a function of V . Using eqs. (5), we can
rewrite the wave resistance as

R = h2 Λ(V )
Ξ2(V )

. (12)

In general, we have to rely on numerics to calculate the integrals Ξ and Λ. Typical results
are presented in fig. 2 for an object of size 0.1 mm immersed in water, and for a step-like
function φ̂ equal to 1 for k < 1/b and 0 otherwise. We first observe in fig. 2(a) that Ξ
increases sharply near the threshold. This leads to two rather different behaviours for Λ and
R as shown in fig. 2(b): while Λ exhibits a discontinuity close to V = Vc [14], the fixed-depth
wave drag R = Λ/Ξ2 cancels smoothly at the critical velocity.

Inviscid flow. – The characteristic features displayed by the plots of fig. 2 can be captured
by a zero-viscosity analysis. Setting ν = 0, eq. (6) can be simplified as

Ξ = P
∫

d2k

(2π)2
k

ρ

(
φ̂(k)

ω2
0(k) − (k · V )2

)
, (13)
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Fig. 2 – (a) Numerical calculation of the dimensionless integral Ξ̄ = Ξ(V )/Ξ(0). (b) Comparison of
Λ̄(V ) = Λ(V )/Λc (dashed line) and R̄ = Λ̄/Ξ̄2 (full line) describing, respectively, the fixed-force and
fixed-depth behaviour of the wave resistance. We clearly see that contrary to the fixed-force analysis,
the fixed-depth calculation does not yield any discontinuity at the threshold. Here ν = 10−6 m2 s−1,
γ = 72 mN m−1, ρ = 1000 kg m−3 and b = 0.1 mm.

where P denotes the Cauchy principal value of the integral. The integral is calculated in polar
coordinates (k, θ), where θ is the angle of k with respect to V . Introducing the function G
defined by

G(k) = P
∫ 2π

0

dθ

2π

(
1

m2
k − 2M2 cos2(θ)

)
, (14)

where m2
k = k/κ+κ/k and M = V/Vc is the “Mach” number, eq. (13) can then be rewritten as

Ξ =
1
γκ

∫ ∞

0

dk

2π
φ̂(k)G(k). (15)

Using the residue theorem [15], we get

G(k) =
1√

m2
k(m2

k − 2M2)
Θ(m2

k − 2M2), (16)

where Θ is the Heaviside step function. The variations of m2
k with k are plotted in fig. 3: m2

k

reaches its minimum value (m2
k)min = 2 for k = κ. It shows that the equation 2M2 −m2

k = 0
has two solutions, k1 and k2, with k1 < κ < k2, if V is larger than the critical velocity Vc, and
none if V < Vc.

For V > Vc, Ξ evaluates to

Ξ =
1
γκ

[∫ k1

0

dk

2π

φ̂(k)√
m2

k(m2
k − 2M2)

+
∫ ∞

k2

dk

2π

φ̂(k)√
m2

k(m2
k − 2M2)

]
. (17)

The above integrals can be calculated in the two limiting cases M ≈ 1 (i.e. V ≈ Vc) and
M 
 1 (i.e. V 
 Vc).

For large M, the integrals are restricted to either large or small values of k. If φ̂ vanishes
faster than 1/k for large k, we can show that the small-k contribution dominates. In this
region, the dispersion relation is dominated by gravity waves, so that we can approximate m2

k

by k/κ. A straightforward calculation then yields the following asymptotic expansion for Ξ:

Ξ ∼ 1
6πγ

(
Vc

V

)4

. (18)
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Fig. 3 – Variations of m2
k (see text) with k. Since m2

k reaches a minimum for k = κ with m2
κ = 2, the

equation m2
k = 2M2 presents solutions for M > 1. In this case, there are two possible values, k1 and

k2 with k1 < κ < k2.

Combining this result with (11) and 12, we get

R ∼ 12πρh2 V 10

V 8
c

.

Let us now focus on the case V close to Vc. We set

Ξ̃1 =
∫ k1

0

dk

2π

φ̂(k)√
m2

k(m2
k − 2M2)

,

and

Ξ̃2 =
∫ ∞

k2

dk

2π

φ̂(k)√
m2

k(m2
k − 2M2)

.

Using the fact that k1 and k2 are the roots of m2
k = 2M2, we can rewrite Ξ̃1 as

Ξ̃1 =
∫ k1

0

dk

2π

kφ̂(k)√
(k2/κ2)(k − k1)(k − k2)

.

When V → Vc, the (k − k1)(k − k2) term cancels in k = κ. Since all other terms are
regular, we can write at the leading order

Ξ̃1 ∼ κ
φ̂(κ)√

2

∫ k1

0

dk

2π

1√
(k − k1)(k − k2)

.

This latter integral is readily calculated and gets a very simple form in the limit V → Vc:

Ξ̃1 ∼ κ
φ̂(κ)√

2
ln (k2 − k1) ∼ κ

φ̂(κ)
2
√

2
ln (M− 1) .

Since m2
k is invariant by the transformation k/κ → κ/k, Ξ1 and Ξ2 have the same asymp-

totic behaviour for V → Vc. In this limit Ξ =
(

Ξ̃1 + Ξ̃2

)
/γκ ≈ 2Ξ̃1/γκ, hence

Ξ ∼ 1
2π

√
2γ

φ̂(κ) ln (M− 1) . (19)



F. Chevy et al.: Capillary gravity waves: A “fixed-depth” analysis 801

For an object of size b, the width of φ̂ is about 1/b. If we choose b � κ−1, we can
approximate φ̂(κ) by φ̂(0) = 1. Equation (19) then takes the following form [16]:

Ξ ∼ 1
2π

√
2γ

ln (M− 1) ∼ 1
2π

√
2γ

ln
(

V − Vc

Vc

)
. (20)

Combining eqs. (10) and (20), we see that slightly above the threshold, the wave resistance
behaves like

R ∼ 4π2

√
2

(
γκh2

ln2 (V/Vc − 1)

)
. (21)

Equation (21) constitutes the main result of this paper. First, we notice that for small
objects this relation is independent of the shape of the pressure field. Second, and more
important, it shows that the wave resistance R cancels out at V = Vc. This smearing is due
to the cancellation of the vertical force F0 near the threshold that we get from the behaviour
of Ξ.

Comparison with experiments. – Comparison of eq. (21) and the result of [5] proves that
the behaviour of the wave resistance is strongly dependent on the conditions in which the
experiments are performed and suggests that a full test of Raphaël and de Gennes’ model
requires a measurement of both R and F0.

The model proposed here roughly reproduces the conditions of Burghelea’s setup. It leads
indeed to a smooth cancellation of the drag at the threshold but accordance remains only
qualitative. Indeed, authors of [17] find the following scaling for the wave drag:

Rexp ∼ Fcρ (gh)3/2 b2

νγ
f(V/Vc),

where Fc is the Stockes drag at threshold and h the width of the channel. Assuming the
simple law Fc ∼ ρνbVc, we get

Rexp ∼
(

ρ7g7

γ3

)1/4

h3/2b3f(V/Vc), (22)

which differs from the scaling of eq. (21). It should be emphasized that (22) involves finite-size
effects (due to the presence of the width h of the channel) and is hence beyond the scope of
our model which assumes an infinite geometry.

In this respect comparison with [6] is more involved and would require further theoretical
studies to be fully understood. Indeed, due to the setup design (an immersed wire, wetted by
the liquid and the deflection of which measures the wave resistance), it cannot be described
by any of the two simple types of models presented here (constant depth or constant force).

Conclusion. – In this paper we have shown that in a fixed-depth situation the discon-
tinuity of the drag force calculated in [5] vanishes and is replaced by a smooth variation, in
accordance with the experimental results found in [7]. A quantitative comparison between the
present analysis and the data of ref. [7] is however more involved, since experiments from [7]
were performed in narrow channel geometry [17] and would require the description of the
reflections of the waves on the walls of the channel. Further study would also be required to
understand the role of wetting of the liquid on the object in the variation of the wave drag.
The present calculation suggests nevertheless that to fully test relation (1), experiments need
to be devised that would measure both R and F0.
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