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Capillary levelling of a cylindrical hole in a viscous
film

Matilda Backholm,a Michael Benzaquen,b Thomas Salez,b Elie Raphaëlb

and Kari Dalnoki-Veress*ab

The capillary levelling of cylindrical holes in viscous polystyrene films was studied using atomic force

microscopy as well as quantitative analytical scaling arguments based on thin film theory and self-

similarity. The relaxation of the holes was shown to consist of two different time regimes: an early

regime where opposing sides of the hole do not interact, and a late regime where the hole is filling up.

For the latter, the self-similar asymptotic profile was derived analytically and shown to be in excellent

agreement with experimental data. Finally, a binary system of two holes in close proximity was

investigated where the individual holes fill up at early times and coalesce at longer times.
1 Introduction

The nanorheology of thin polymer lms has recently received
signicant scientic attention due to the important effect
connement has on the mobility of the polymer molecules.1–10

The understanding of the viscous ow and stability of these lms
is important for technological applications, where ultra-thin
polymer coatings are frequently used in, e.g., nanolithography11

and nanoimprinting,12 as well as in the development of non-
volatile computer memory devices.13

This topic is also of importance for applied mathematics and
fundamental physics. The use of dimensional analysis,14

scaling, and self-similarity has led to remarkable historical
results in hydrodynamics15 and particularly in the study of
turbulence.16,17 An interesting example is that of the prediction
of the nuclear explosion power by Taylor.18,19 The theory of
intermediate asymptotics developed by Barenblatt20 investi-
gates and makes use of the more profound meaning of these
concepts to provide a general method for solving nonlinear
problems at intermediate times. The term “intermediate” refers
to time scales that are large enough for the system to have
forgotten the initial conditions but also far enough from the
generally predictable nal equilibrium steady state. If existing,
this solution is independent of the initial condition and is thus
frequently called a universal attractor. According to Bare-
nblatt,20 one of the remaining problems for which the applica-
tion of this technique can yield novel and substantial results is
that of the capillary-driven thin lm equation that describes the
dynamics of thin liquid lms. In the past few years, many
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analytical21–23 and numerical studies24,25 have been performed in
order to improve the mathematical knowledge of this equation
and provide partial solutions to specic problems.

The dynamics of hole formation and growth has been
extensively studied in the dewetting of thin viscous lms.26–38 In
the work by Stange et al.,39 the growth of a small indentation in a
22 nm thick polystyrene (PS) lm was followed. In this case,
there is competition between the Laplace pressure,40 which acts
to level any perturbation of the surface, and the disjoining
pressure,41,42 which amplies surface modulations. When the
disjoining pressure dominates, there is a continuous deepening
of the hole and a subsequent rupturing and dewetting of the
lm. Alternatively, in a system where the Laplace pressure
dominates over the disjoining pressure, capillary-driven level-
ling will take place. This latter phenomenon has recently been
explored with a single step perturbing the surface of a PS
lm,43–48 where it was shown that the self-similar temporal
evolution of the height prole can be used to accurately deter-
mine the capillary velocity (the ratio of the surface tension to the
viscosity, g/h) of the thin lm, thus providing a simple and
precise nanorheological probe. Furthermore, capillary levelling
has been studied with a trench-like geometry,23,49 a patterned
surface,11,50,51 and a droplet spreading on an underlying viscous
lm.45,52 Crucial to these studies, and the one presented here, is
that the length scales considered were well below the capillary
length, thus the effect of gravity on the ow53 can safely be
neglected.

Here, we report on the relaxation of nearly perfect cylindrical
holes indented half-way into a thin PS lm. This circular
geometry is similar to that studied to probe dewetting, as
described above, but in our case the lms are thick enough that
the samples are stable against spinodal dewetting, and dis-
joining forces can be ignored.42 Instead, the capillary forces at
the polymer–air interface dominate and the system will thus
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Dark field optical microscopy image of a typical as-prepared
sample, showing the rims of several randomly distributed circular
holes with various sizes. The smallest holes are only visible as bright
spots. The inset shows a schematic illustration (not to scale) of the
experimental hole-formation setup. The washer, partially supporting
the free-standing film, was placed on two rubber spacers on top of a
heating stage and the film was then watched under a microscope as
the holes formed and grew larger.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
7 

Ja
nu

ar
y 

20
14

. D
ow

nl
oa

de
d 

by
 E

co
le

 S
up

 d
e 

Ph
ys

iq
ue

 e
t d

e 
C

hi
m

ie
 I

nd
us

tr
ie

 o
n 

08
/0

4/
20

14
 0

9:
57

:2
7.

 
View Article Online
evolve towards a completely different nal equilibrium steady
state, namely that of a at lm instead of dispersed dewetted
droplets. Films containing the cylindrical surface perturbations
were annealed above the glass transition temperature, leading
to a ow of the polymer melt and allowing for the capillary-
driven relaxation to take place. By closely following the evolu-
tion of several holes with different initial sizes, we nd two
distinct regimes in the approach to equilibrium: an early regime
where opposing sides of the hole do not interact, and a late
regime where the hole is lling up. In both cases, the energy
dissipation of the system is well understood from quantitative
scaling arguments and compared to that of previously studied
geometries. Furthermore, proles in the late regime converge
perfectly to the analytically calculated universal asymptotic
prole. Finally, while the evolution of single isolated holes is the
core of this study, we have also investigated the relaxation of two
holes that are in close proximity. Here, an interesting interplay
between lling-up and coalescing of the holes was detected.

2 Experiment

Polystyrene (PS, Polymer Source Inc.) lms containing cylin-
drical holes, as shown in Fig. 1 and 2, were prepared in the
following two stage process. First, PS lms with a molecular
weight ofMW ¼ 60 kg mol�1 and polydispersity index ofMW/MN

¼ 1.03 were spin cast from a 2% toluene (Fisher Scientic,
Optima grade) solution onto freshly cleaved mica sheets (Ted
Pella Inc.) as well as onto 1 cm � 1 cm silicon (Si) wafers
(University Wafer). These lms, prepared at the same time and
from the same solution, all had the same nominal lm thick-
nesses hmica ¼ 75 � 1 nm and hSi ¼ 67 � 1 nm, on the mica and
Si substrates respectively. Previous to the spin casting, the Si
wafers had been exposed to air plasma (Harrick Plasma, low
power for 30 s) and rinsed in ultra pure water (18.2 MU cm, Pall,
Cascada LS), methanol (Fisher Scientic, Optima grade), and
toluene. All PS lms were then pre-annealed in a vacuum oven
(�10�5 mbar) for 24 hours at 130 �C, i.e. well above the glass
transition temperature of PS (Tg ¼ 97 �C for the molecular
weight used here), in order to remove residual solvent and relax
the polymer chains.

In the second stage of the preparation, a pre-annealed lm
on the mica sheet was oated off the supporting sheet and onto
the surface of ultra pure water and carefully picked up onto a 1
cm � 1 cm metal washer with a circular hole (B ¼ 3 mm) in the
middle, thus creating a free-standing lm with no supporting
substrate. The washer was then placed, as shown in the inset of
Fig. 1, with the lm facing downwards on a hot stage (Linkam)
with two rubber spacers (thickness of a few mm) in between to
reduce conductive heat transfer through the washer. The free-
standing lm was annealed in air, 5–10 �C above the bulk Tg and
observed under a reective microscope until small holes were
formed through either nucleation on small dust particles or
spinodal decomposition.54,55 Holes in free-standing lms have
been shown to grow exponentially in time.54,56,57 Therefore, by
waiting for a short while, holes with sizes up to tens of
micrometers were produced, aer which the washer was taken
off the hot stage, quenched to room temperature, and placed
This journal is © The Royal Society of Chemistry 2014
(lm down) atop the previously prepared sample with a PS lm
on Si substrate. Due to the strong van der Waals interaction
between the two PS lms, they contacted and the washer could
then be carefully lied off the sample, leaving the free-standing
lm (with cylindrical holes) atop the Si supported lm.

As shown in the dark eld optical microscopy image of Fig. 1,
the as-prepared sample consists of a PS lm with randomly
distributed cylindrical holes of various sizes. As illustrated in
Fig. 2(a), the total lm thickness and initial hole radius and
depth are dened as h0, r0 and d0, respectively. The ratio d0/(h0
� d0) z 1.1 was constant for all holes investigated, whereas the
initial radius varied.

To study the relaxation of these lms, the samples were
annealed for various amounts of time on a hot stage in air at
140 �C with a heating rate of 90 �C min�1. Aer each annealing
cycle, the sample was taken off the hot stage and quenched to
room temperature, thus inhibiting any further viscous ow (we
note that the time to heat and quench samples is fast in
comparison to the annealing times used). Holes were scanned
with atomic force microscopy (AFM, Veeco Caliber) at room
temperature both before any annealing had taken place (see
initial AFM scan in Fig. 2(a)), as well as between every subse-
quent annealing cycle, as illustrated by the examples in Fig. 2(b)
and (c). A large scale optical microscopy image (see Fig. 1) of the
sample was used as a map to nd the same microscopic holes
aer each annealing cycle. The total thickness of the lm at the
radial position r, aer a total annealing time t, is dened as h(r,
t). To determine the initial thickness of the bottom lm (h0 �
d0), a sharp scalpel was used to make a scratch in the lm down
to the Si substrate, and the height of the step was then
measured with AFM.

In experiments with long annealing times, proles were
difficult to access with AFM because of the shallow (#20 nm)
Soft Matter, 2014, 10, 2550–2558 | 2551
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Fig. 2 (a) AFM surface topography of an initial hole with a radius of r0¼
2.8 mm and a depth of d0 ¼ 75 nm, in a film with a total thickness of h0
¼ 143 nm. (b) and (c) show the same hole after 20 and 1300 min of
total annealing at 140 �C. The horizontal size of all images is 15 mm and
the thickness of the film in each radial point r, after a total annealing
time t, is denoted by h(r, t).
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and wide (�40 mm) surface features. In such cases, imaging
ellipsometry (Accurion Nanolm EP3, Germany) was used. We
ensured that both AFM and ellipsometry were in mutual
agreement by carrying out calibration measurements with both
tools. Radial height proles were extracted from the centre line
of the holes in order to investigate the temporal evolution of the
relaxation caused by the capillary-driven viscous ow of the
polymer melt.
3 Theory

Here we establish the theoretical framework in which the
dynamics of the levelling holes can be understood. The evolu-
tion of the system is governed by a highly nonlinear equation
that cannot be analytically solved. Nevertheless, by assuming
particular self-similar symmetries and using conservation of a
global quantity, the volume, we are able to characterise quan-
titatively the asymptotic behaviours of the system at short and
long times. In particular, at long times we provide an exact
analytical self-similar solution that is the universal attractor.
Interestingly, here we explicitly take advantage of the intimate
relation between scaling, self-similarity, and intermediate
asymptotics,20 to overcome the nonlinearity of the problem.
3.1 Thin lm equation

Given that vertical length scales are small compared to typical
radial scales, the use of the lubrication approximation is legit-
imate. The levelling of the lm is driven by gradients in the
2552 | Soft Matter, 2014, 10, 2550–2558
Laplace pressure and damped by viscosity. Given the height
scales involved, hydrostatic53 and disjoining pressures41,42 can
be safely neglected. The Stokes equation is used to connect local
velocity and pressure. In addition, we assume radial symmetry
at all times. Assuming no slip at the substrate and no stress at
the free surface yields a Poiseuille ow in the radial direction.
Finally, invoking incompressibility of the ow leads to the
cylindrical capillary-driven thin lm equation:45,52

vthþ g

3h

1

r
vr

�
rh3

�
vr

3hþ 1

r
vr

2h� 1

r2
vrh

��
¼ 0: (1)

Non-dimensionalization of lengths is performed as follows:
h ¼ Hh0, d0 ¼ D0h0, r ¼ Rr0. Consistently with eqn (1), time is
non-dimensionalized as: t ¼ 3Thr0

4/(gh0
3). This leads to the

dimensionless cylindrical capillary-driven thin lm equation:

vTH þ 1

R
vR

�
RH3

�
vR

3H þ 1

R
vR

2H � 1

R2
vRH

��
¼ 0: (2)

An interesting quantity to describe the evolution of the
prole is the excess surface S, with respect to the one of the at
equilibrium conguration, as this quantity is proportional to
the excess surface energy of the lm gS. We dene the dimen-
sionless excess surface ~S ¼ S/(ph0

2), which for small slopes is
well approximated by:

~S ¼
ðN
0

dRRðvRHÞ2: (3)

In the following sections, we focus on understanding the
short-term and long-term asymptotic behaviours of physical
quantities such as the just dened excess surface, the perimeter
of the hole, and the full height prole itself. Note that although
all the functions here also depend parametrically on the vertical
initial aspect ratio D0, we do not write explicitly this dependence
for the sake of clarity, and because the reported experiments are
performed with almost a unique D0.
3.2 Early time evolution

At early times, we expect the central depth of the prole to be
constant and the edge front of the hole not to be inuenced by
the central region (R � 0). Therefore, guided by previous
studies,44–46,49we centre the short-term proles at the edge of the
hole through the change of variables: H(Ř + 1, T) ¼ �H(Ř, T).
Together with eqn (3), this leads to:

~S ¼
ðN
�1

dR

�
R�þ 1

��
vR�H

�

�2

: (4)

Consistently with the dimensional analysis of eqn (2), and
with the short-term result of a previous study on linear
trenches,49 we assume short-term self-similarity of the prole in
the variable �U ¼ ŘT�1/4, with constant amplitude. This translates
into:

�H( �UT1/4, T ) ¼ �F ( �U), (5)

where �F is an unknown function. Performing such a change of
variables in eqn (4) leads to:
This journal is © The Royal Society of Chemistry 2014
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~S ¼
ðN
�T�1=4

dU�
�
U�þ 1

T1=4

�
F� 0
�
U�
�2

: (6)

Using T� 1, one obtains the further simplication of eqn (6):

~Sz
1

T1=4

ðN
�N

dU�F�
0
�
U�
�2

; (7)

since the nonzero information of �F 0 is located around the edge
front (�U � 0). This predicts a short-term temporal scaling of the
excess surface, and thus excess energy, in T�1/4.
3.3 Late time evolution

In the long-term regime, we now expect the central depth of the
prole to reduce in time until the at equilibrium situation is
reached. Therefore, we set H(R, T) ¼ 1 + D(R, T), where the new
relevant unknown D(R, T) is the excess prole with respect to the
nal reference state. It shall be treated as a perturbation later on.
Before, consistently with the dimensional analysis of eqn (2), and
guided by the long-term results of previous studies,23,49 we only
assume long-term self-similarity of the prole in the variable U¼
RT�1/4, with a decaying amplitude. This translates into:

D(R, T) ¼ a(T)G(U), (8)

where G and a are, as yet, unknown functions, and where we
impose G(0) ¼ 1 with same generality. Note that this form is
different from the short-term self-similarity of eqn (5) as we now
allow for an amplitude factor a(T) that enables the lling-up of
the hole. In order to determine the function a(T), we consider
the dimensionless volume ~V of the perturbation. Consistent
with the non-dimensionalization of lengths detailed in part 3.1,
the dimensionless volume is dened from the real volume V of
the perturbation as ~V ¼ V/(2pr0

2h0), and therefore satises:

~V ¼
ðN
0

dRRDðR; TÞ: (9)

Performing the change of variables of eqn (8) into (9) leads
to:

~V ¼ aðTÞT1=2

ðN
0

dUUGðUÞ: (10)

Then, since the volume has to be conserved, one has:

a(T) ¼ bT�1/2, (11)

where b ¼ a(1) ¼ T1/2D(0, T) is a constant factor.
According to eqn (3), (8), and (11), one obtains:

~S ¼ b2

T

ðN
0

dUUG0ðUÞ2; (12)

thus predicting a long-term temporal scaling for the excess
surface, and thus excess energy, in T�1.

Another relevant geometrical quantity is the dimensionless
perimeter (or radius, equivalently) Pq of the prole where q is a
given height ratio with respect to the central depth of the hole. It
can be dened from the real perimeter pq, through Pq ¼ pq/
(2pr0), and from the relation:
This journal is © The Royal Society of Chemistry 2014
D(Pq, T ) ¼ qD(0, T ) (13)

Invoking eqn (8) and (13), one can write: G(PqT
�1/4) ¼ q.

Inverting the function G is allowed when q is chosen so that Pq is
uniquely dened. In this case, one has:

Pq ¼ T1/4G�1(q). (14)

Since the factor G�1(q) depends only on the xed threshold q,
eqn (14) predicts a long-term temporal scaling of the perimeter
in T1/4.

Finally, we show that in the long-term regime one can also
determine analytically the function G. Indeed, at late times the
hole is lling up and, at some point, the surface displacement
can reasonably be considered as a small perturbation of the
lm: D(R, T) ¼ H(R, T) � 1 � 1. In this regime, it is thus legit-
imate to linearise eqn (2):�

vT þ vR
4 þ 2

R
vR

3 � 1

R2
vR

2 þ 1

R3
vR

�
D ¼ 0: (15)

Combining eqn (8), (11), and (15), leads to the ordinary
differential equation:

G0000 þ 2G000

U
� G00

U2
þ
�

1

U3
�U

4

�
G0 � G

2
¼ 0: (16)

Eqn (16) can be solved analytically together with the natural
boundary conditions of the problem:
limU/NGðUÞ ¼ limU/NG0ðUÞ ¼ G0ð0Þ ¼ 0 and G(0) ¼ 1. Its
solution reads:

GðUÞ ¼ U2

4
ffiffiffiffi
p

p 0H2

��
3

2
;
3

2

�
;

U4

256

�
� 0H2

��
1

2
; 1

�
;

U4

256

�
; (17)

where the (0, 2)-hypergeometric function58,59 is dened as:

0H2½fa; bg; w� ¼
X
k$ 0

1

ðaÞkðbÞk
wk

k!
; (18)

with the Pochhammer notation ($)k for the rising factorial. This
long-term self-similar solution is expected to be independent of
the initial condition.20 It is thus called the universal attractor, or
the intermediate asymptotic solution, of eqn (2). Note that this
universal solution is strongly linked to the spatial dimension
and boundary conditions of the problem. For a detailed deri-
vation together with experimental evidence of the 2D long-term
solution in regard of different boundary conditions, see
previous studies.23,44,46,49
4 Results and discussion

We now turn to the results of the experiments described above
and compare to the theoretical predictions. We rst focus on
single individual holes, before studying the coalescence of
binary systems.
4.1 Single holes

For clarity, we rst focus on three single holes of different initial
radii: a small one (r0 ¼ 0.8 mm), a medium one (r0 ¼ 2.8 mm),
Soft Matter, 2014, 10, 2550–2558 | 2553
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Fig. 3 (a) Height profiles of the medium hole (r0 ¼ 2.8 mm) as a
function of radial distance r, after different total annealing times t. (b)
Normalised height profile, d(r, t) ¼ h(r, t) � h0, of the same hole, as a
function of the long-term self-similar variable.
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and a large one (r0 ¼ 4.4 mm). We study the overall behaviour
with the medium hole, and use the large and small holes to
address the short-term and long-term regimes respectively.

In Fig. 3(a), the height prole of the medium hole (also
introduced in Fig. 2) is plotted as a function of radial distance,
for several total annealing times. The “cuspy” rim of the initial
hole is the result of the hole growth mechanism in viscoelastic
lms close to Tg.60–62 This cusp is attened out on time scales
signicantly shorter than those relevant to our experiment, due
to the large Laplace pressure associated with such a geometry.
Similarly, at early times, the corners of the hole relax by forming
a “dip” at the bottom and a “bump” at the top, thus quickly
evening out these sharp features of the cylindrical structure.
The prole broadens with time similar to that seen with single
steps,43,46 trenches,49 and droplets.52 As time progresses, mate-
rial ows in from the sides of the lm and lls up the hole in a
symmetric fashion. In Fig. 3(b), the normalised height for the
same hole is plotted as a function of the long-term self-similar
variable u¼ rt�1/4 predicted in the Theory section. It can be seen
how the normalised dip of the wave deepens before the long
time relaxation stage occurs. In the latter regime, the collapse of
the proles at late times becomes apparent (see proles at 700,
1300, and 2300 min in Fig. 3(b)).

A larger initial hole radius makes it more precise to study the
early time that lasts longer. In Fig. 4(a), the short-term nor-
malised height proles of the large hole are plotted as a func-
tion of the short-term self-similar variable (r � r0)t

�1/4 of the
theory. They collapse onto one single prole, indicating self-
similarity in the early time regime consistently with the theo-
retical assumptions of Section 3.2.

For a smaller initial hole radius, the late time regime is
reached faster and this system thus allows for the study of the
long-term asymptotic regime. In Fig. 4(b), the long-term nor-
malised height proles of the small hole are plotted as a func-
tion of the long-term self-similar variable rt�1/4 of the theory.
They collapse onto one single prole that is well tted by the
analytical attractor of eqn (17), thus validating the theoretical
assumptions and predictions of Section 3.3. Moreover, this
single parameter t (horizontal stretch) allows for a measure-
ment of the inverse capillary velocity of the lm: h/g ¼ 0.27 min
mm�1, which is consistent with previously measured values for
MW ¼ 60 kg mol�1 PS thin lms.47

We now consider all the holes that have been experimentally
studied, including the three previously described. As indicated
by eqn (5), (8), and (11), the hole depth d(t) ¼ h0 � h(0, t) is
expected to be constant at small times and to scale like T�1/2 at
late times, where T ¼ gh0

3t/(3hr0
4). Fig. 5 shows the normalised

depth as a function of T for all holes studied in this work,
resulting in a collapse of all data sets, as expected from the
theory. The crossover in the temporal scaling demonstrates the
strong inuence of the boundary conditions on the levelling
dynamics. In the early time regime, the sides of the hole are not
interacting and the depth remains unchanged. As the opposite
sides of the hole start to interact, the hole centre counterintu-
itively moves far below the initial depth of the hole, which
causes a small but measurable (log–log) shoulder in the cross-
over regime of Fig. 5. At long times, the holes ll and evolve
2554 | Soft Matter, 2014, 10, 2550–2558
eventually towards the equilibrium state corresponding to a
completely at lm with no gradients in the Laplace pressure
and thus no more capillary-driven ow. As indicated by the
dashed and solid lines, the experimental data conrms the
constant-depth assumption of the short-term theory and is in
excellent agreement with the predicted long-term temporal
scaling in T�1/2.

The relevant quantity to study the global excess capillary
energy of the system is the excess surface area S, as dened in
eqn (3). It was calculated for all holes, between all annealing
steps, and is plotted in Fig. 6 as a function of normalised time.
Again, the data collapses in full agreement with the theoretical
quantitative scaling laws for the early and late temporal
regimes, as formulated in eqn (7) and (12) respectively. Apart
from the change in dissipation rate between both regimes,
linked to the change in effective boundary conditions, there is a
continuous decrease of the total surface area, and thus global
surface energy, which directly results from the total bulk
dissipated viscous power. The somewhat counterintuitive local
ow features seen at the bottom of the holes in the crossover
regime, as pointed out in Fig. 5, are simply the result of the local
constructive interference of opposing sides of the holes and do
not affect the global decrease of energy reported in Fig. 6.

The early T�1/4 scaling is identical to that observed in the
levelling of a single 2D step44,46 and in the short-term relaxation
of a 2D trench.49 This can be understood as follows: at early
This journal is © The Royal Society of Chemistry 2014
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Fig. 5 Normalised depth as a function of normalised time for all holes
studied in this work (markers show different holes with initial radii r0).
The dashed line shows the initial normalised depth whereas the solid
line is the theoretical prediction for the scaling in the late time regime,
as given by eqn (8) and (11).

Fig. 4 (a) Short-term normalised height profiles, d(r, t)¼ h(r, t)� h0, for
the large hole (r0 ¼ 4.4 mm), as a function of the short-term self-similar
variable. (b) Long-term normalised height profiles for the small hole (r0
¼ 0.8 mm), as a function of the long-term self-similar variable. The
analytical attractor of eqn (17) has been fit to the collapsed profiles. In
both (a) and (b), the insets show the corresponding non-normalised
profiles.
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times the edge front of the hole is far form the centre which
brings the problem close to a 2D geometry, i.e. that of linear
trenches and steps. However, the late time energy dissipation of
the 3D holes reported here is signicantly faster than that of the
2D trenches at long times: Thole

�1 vs. Ttrench
�3/4. This funda-

mental difference is due to the three-dimensionality of the hole,
for which material is allowed to ow in from all azimuthal
orientations, resulting in a faster relaxation process. The tran-
sition between the two regimes also occurs earlier for the holes
than what was observed with the 2D trenches.49
4.2 Double holes

In this work, we also studied a binary system consisting, coin-
cidentally, of two nearly equally sized holes located a small
distance apart, as shown in the temporal surface topography
series of Fig. 7. The two neighbouring holes have edges initially
separated by 4 mm and initial average radius and depth of r0 ¼
1.4 mm and d0 ¼ 74 nm, respectively. The height prole of this
pair is plotted in Fig. 8(a) as a function of the lateral distance x
and for several annealing times t. At early times, the two holes
can be seen to evolve independently of each other. As the holes
This journal is © The Royal Society of Chemistry 2014
widen out, they start to interact and coalesce. Fig. 8(b) shows the
features of the initial proles in the inter-hole region (“bridge”),
and material can be seen to be pushed in and up by both of the
widening holes. As shown in Fig. 8(c), when the holes come
close enough the bridge between the two moves down, causing
material to ow out. This continues until the bridge reaches the
same level as the rising centres of the individual holes. Aer-
wards, the coalesced hole is slowly lling up again while
changing from an elliptical to an axisymmetric shape. When the
latter symmetry is recovered, the overall dynamics is expected to
be described by eqn (1).

The coalescence can be seen in the AFM surface plots of
Fig. 7, as well as in the top view images of Fig. 9(a). To quantify
this process in more detail, the temporal evolution of the
perimeter pq of the binary system was calculated from experi-
mental data and compared to that of single holes. The perim-
eter was dened to be vertically positioned at q ¼ 40% of the
central depth (see Section 3.3). This reference fraction corre-
sponds to the approximate intersection point for all non-nor-
malised short-term proles (see e.g. Fig. 3(a)). The results are
shown in Fig. 9(b), where the normalised perimeter is plotted as
a function of the normalised time.

The single hole data collapse on a master curve, and a
transition between the initial and nal regimes is observed at
the same normalised time as for the depth and excess surface
area in Fig. 5 and 6, as expected by the theory. In the early time
regime, no perimeter change occurs which is simply the result
of the particular choice of the reference fraction q. As the holes
transition to the long-term regime, the perimeter grows with a
T1/4 power law as predicted by eqn (14). Naturally, this long-term
scaling law is now independent of the choice of the reference
fraction q, since it corresponds to the overall self-similar
behaviour described in Section 3.3.

As far as the perimeter of the double hole system is con-
cerned, it follows initially the single hole scaling perfectly. As
shown in Fig. 9, the hole perimeter remains unchanged up to 30
minutes of total annealing, aer which each individual hole
Soft Matter, 2014, 10, 2550–2558 | 2555
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Fig. 6 Normalised excess surface area as a function of normalised
time. The lines show the early (dashed line) and late (solid line) time
regime scalings predicted by eqn (7) and (12).

Fig. 7 AFM surface topographies of two neighbouring identical holes
after 2, 30, 120, 240, 480, and 900 minutes of total annealing at
140 �C. The horizontal size of all images is 25 mm and the vertical scale
is the same for all images.
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enters the single hole long-term regime and thereby widen out
according to the T1/4 prediction of eqn (14). Aerwards, a strong
deviation from the single hole behaviour can be seen when the
two holes start to interact and coalesce (full green circle). The
temporal location of this departure from the single hole
behaviour depends obviously on the denition of the reference
fraction q, but always occurs when the coalescence becomes
apparent in a top view similar to the one of Fig. 9(a). The initial
distance between the holes must also inuence the temporal
location of this departure. For holes of identical size, and for a
xed q, one expects the departure location to simply depend on
the ratio of the hole radius to the hole separation. By increasing
this ratio, the departure should occur earlier in time and could
in principle even happen before the single hole crossover to the
single-hole long-term T1/4 regime. Finally, at very large times, we
expect the coalesced binary hole to become axisymmetric again.
Then, the overall dynamics is expected to be described again by
eqn (1), and thus the departure branch of Fig. 9 to join back the
single-hole long-term T1/4 regime.
5 Conclusions

We have reported on the capillary-driven relaxation of cylin-
drical holes in thin polystyrene lms above their glass transition
temperature. Two different self-similar regimes were predicted
through quantitative scaling arguments, and were successfully
conrmed experimentally. In addition, we calculated analyti-
cally the universal self-similar attractor of the developed thin
lm theory and showed the excellent agreement with the long-
term experimental proles. At a given initial depth of the hole,
the time scales involved in the two relaxation regimes were
shown to depend only on the initial radius of the hole, the
thickness of the lm, and the capillary velocity of the material.
The excess energy of the system was calculated and shown to be
monotonically decreasing as the system approached the equi-
librium conguration. Moreover, at the crossover between the
two self-similar regimes, the temporal excess energy scaling was
shown to change from t�1/4 to t�1, reecting the crucial
2556 | Soft Matter, 2014, 10, 2550–2558
inuence of the effective boundary conditions and of the
dimension of the system. Finally, a double hole binary system
was investigated and a clear deviation from the single hole
behaviour was observed during coalescence.

The excellent agreement between theory and experiments
demonstrates the efficiency of the intermediate asymptotics
theory, in a new cylindrical 3D geometry, to overcome the
nonlinearity of the governing thin lm model and to provide
quantitative scalings for important global quantities in the
system, such as the total energy. The understanding of the
evolution of this simple system has implications for polymer-
based industrial applications where the existence of small
topological features or defects have the ability to enhance or
destroy the function of associated devices. Finally, the reported
system provides an ideal probe of the relaxation and coales-
cence processes that act in thin viscous lms.
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Fig. 8 (a) Temporal evolution of the height profile of the two neigh-
bouring (edges initially separated by 4 mm) holes with an initial average
radius and depth of r0 ¼ 1.4 mm and d0 ¼ 74 nm, respectively. The
dashed lines indicate measurements performed with the imaging
ellipsometer. (b) Short-term profiles in the bridge region between the
holes. (c) Vertical position of the middle of the bridge as a function of
time.

Fig. 9 (a) Top view images of the double hole system after the same
annealing times as in Fig. 7, with the perimeter drawn in red. The scale
bar is 3 mm. (b) Normalised perimeter as a function of normalised time.
Both single (all holes studied) and double hole AFM and ellipsometry
data are included. The six individual (colour) markers correspond to the
double hole data of (a).
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and Wetting Phenomena: Drops, Bubbles, Pearls, Waves,
Springer, New York, 2003.

41 S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery,
M. Ibn-Elhaj and S. Schlagowski, Science, 1998, 282, 916–919.

42 R. Seeman, S. Herminghaus and K. Jacobs, Phys. Rev. Lett.,
2001, 86, 5534–5537.

43 J. D. McGraw, N. M. Jago and K. Dalnoki-Veress, So Matter,
2011, 7, 7832–7838.

44 J. D. McGraw, T. Salez, O. Bäumchen, E. Raphaël and
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