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Abstract. We study the dewetting of thin polymer films deposited on slippery substrate. Recent exper-
iments on these systems have revealed many unexpected features. We develop here a model that takes
into account the rheological properties of polymer melts, focussing on two dewetting geometries (the re-
ceding of a straight edge, and the opening of a hole). We show that the friction law associated with the
slippage between the film and the substrate has a direct influence on the dewetting dynamic. In addition,
we demonstrate that residual stresses, which can be stored in the films due to their viscoelasticity, are a
source of destabilization for polymer films, and accelerate the dewetting process.

PACS. 68.60.-p Physical properties of thin films, nonelectronic – 68.15.+e Liquid thin films – 68.55.-a
Thin film structure and morphology – 83.10.-y Fundamentals and theoretical

1 Introduction

If the spreading parameter S = γsv − γsl − γ is negative,
a liquid film deposited onto a flat substrate is thermody-
namically unstable when thinner than the critical thick-
ness (2γ/ρg)1/2 sin (θ/2) (γsv, γsl, and γ are, respectively,
the solid-vapor, solid-liquid, and liquid-vapor surface en-
ergy, and θ is the Young contact angle cos θ = 1 + S/γ; ρ
is the density of the liquid, and g is the gravity accelera-
tion. [1]). It means that holes will appear in the film, and
dry patches will grow until only isolated droplets remain
onto the substrate: the film dewets. The dynamic of the
flows that appear during the dewetting of liquid films is
controlled by the different existing sources of dissipation.

The peculiarity of polymer films is that the entangle-
ments between the chains allow the lower chains to slip
onto the substrate if this one is smooth and passive. One
commonly characterizes the slippage by the hydrodynamic
extrapolation length (or slip length) b = η/ζ [1], where η
is the viscosity of the liquid, and ζ is the friction coeffi-
cient related to a linear interfacial force (per unit surface)
of the liquid on the substrate f = ζvslip. The theoretical
prediction for the length b in the steady-state flow of a
polymer melt is a(N3/P 2), where a is the monomer size,
N is the polymerization index, and P the entanglement
index of the polymer liquid [2]. If the substrate is itself a
liquid layer of thickness e > a and viscosity η′, b is even
increased: e(η/η′). Now, if the slip length b is larger than
the thickness h0 of the polymer film, the vertical velocity
gradients are small compared with the horizontal ones,
and the dewetting of the film can be roughly described
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as a plug flow. The dissipation sources are then the hor-
izontal velocity gradients, and the slippage at the liquid-
substrate interface. For high-molecular-weight polymers,
the viscosity is large (η "

√
ρ|S|b) and inertial effects

can be omitted.
Some years ago, Brochard-Wyart et al. [3,4] (hereafter

cited as BW) initiated the experimental and theoretical
study of the dewetting of thin films, assuming the film
thickness to be smaller than the slip length b (high-slip
regime). Comparing the dissipation due to interfacial fric-
tion with the viscous dissipations in the radial flow associ-
ated to the opening of a hole in a flat film, BW introduced
the characteristic length ∆ =

√
h0b =

√
h0η/ζ. Then, BW

described the opening of a hole in three steps: As long as
the hole radius R is smaller than ∆, the viscous dissipa-
tions due to radial and orthoradial deformations dominate
over the dissipation due to interfacial friction, leading to
an exponential growth of the hole. When R > ∆, the fric-
tion dominates over the viscous dissipation, and the radial
geometry (hole geometry) does not play any role any more.
The problem can then be reduced to the two-dimensional
problem of a film dewetting from a straight edge (edge ge-
ometry). In this geometry, two time regimes appear: In the
first regime, a rim of width ∆ builds up and the dewetting
velocity is constant in time. In the second regime, after the
dewetted distance R has reached a value of order b, the rim
becomes “mature”, that is rounded by the surface tension,
and the velocity decreases proportionally to t−

1
3 .

During the “mature-rim” regime, the morphology of
the rim is fixed by the surface tension and the dynamic
depends only weakly on the film rheology. On the other
hand, when the rim builds up (first regime), the surface
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tension is only effective on a small part of the rim, thus
allowing unusual morphologies and dynamics. The ener-
getic approach used by BW, though very powerful to es-
tablish scaling laws, is unable to handle the description of
the building rim morphology. Moreover, they limited the
use of this method to Newtonian liquids. Though, if poly-
mer entanglements lead to slippage, they also bring about
non-Newtonian rheologies such as viscoelasticity [5]. Ad-
ditionally, as the substrates are always coated in order to
be flat and passive, the friction force rarely varies linearly
with the slip velocity, which means that the slip length is
not constant [6,7].

Ever since this early important work of BW, enor-
mous efforts have been developed towards the study of the
dewetting of thin polymer films [8–26]. A special attention
has been paid to the birth of the rim (note that rims have
only been observed for polymer films [18–26]). System-
atic studies on thin polystyrene (PS) films deposited on
highly slippery substrates have set the principal features
associated with the building up of the rim in the edge ge-
ometry [22,23,25,26]. A rapid decrease of the dewetting
velocity, as t−1, starting from unexpectedly high initial ve-
locities of the order of 1µms−1 is observed. This is associ-
ated to the building of a very asymmetric rim, with an ex-
tremely steep side towards the bare substrate and a much
slower decay on the rear side. The rim width increases
logarithmically with time, proportionally to the dewetted
distance. After a certain characteristic time, the rim width
reaches a maximum and then slowly decreases, while the
dewetting velocity begins to level off. Important variations
of the initial dewetting velocity, and of the maximum rim
width, with the age of the samples conserved below Tg

have been noticed. It happens that the initial dewetting
velocity and the maximum rim width decrease when in-
creasing the conservation time. This feature has been at-
tributed to the presence of residual stresses which could
result from the spin coating process. Indeed, this process
leads to a fast evaporation of the solvent, and lets the poly-
mer molecules in a non-equilibrium frozen-in state [24–27].
Such residual stresses have recently been clearly revealed
experimentally by Bodiguel and Fretigny [28].

In this paper, we first focus on the straight-edge dewet-
ting geometry. This is motivated by the following reasons:
firstly, the flow is simpler than in the hole geometry, and,
secondly, BW has shown that for a large enough radius the
dynamic of hole opening becomes similar to the dynamic
in the straight-edge geometry. Additionally, the fact that
the surface tension is ineffective allows us to study the di-
rect influence of the friction and of the film rheology. We
propose a mechanical study, composed of an analytical
part and a numerical part, which explains the asymmetric
morphology of the rim. We then use BW energetic analy-
sis to study the dynamic of the dewetting of viscoelastic
liquid films. We also take residual stresses into account,
as well as the possibility of a non-linear dependence of
the friction force on the slip velocity. A rather general de-
scription of the dynamic of the birth of the rim is then
developed, allowing a quantitative evaluation of the resid-

Fig. 1. Film geometry: h(x, t) is the profile of the film, h0 is
the initial height of the film, H(t) is the height of the front,
L(t) is the dewetted distance, W (t) is the width of the rim,
and v(x, t) is the horizontal velocity of the film.

ual stresses, and a characterization of the film rheology
and of the friction between the film and the substrate.

In the last part of the paper (Sect. 6), we address the
dewetting process in the hole geometry, which is very com-
monly studied experimentally [16–23]. Though the flow is
slightly more complicated then, the fact that the role of
the friction is reduced during the first stage of the open-
ing of a hole, as shown by BW, allows for a rather simple
description of the phenomenon. We then study the con-
sequences of the viscoelastic and residual stresses on the
dewetting dynamic in this hole geometry.

2 Mechanical study for Newtonian liquids

2.1 Analytical mechanical analysis

Aiming at the description of the building up of the rim, we
consider the dewetting of a liquid film from a straight edge
(reducing the study to a two-dimension problem in the
xOz-plane), neglecting inertia and the film surface ten-
sion. We describe the velocity field using its horizontal
component v and its vertical component w. The film is
initially flat, with a vertical front at the position x = 0,
and is infinitely spreading in the x > 0 half-space. We
assume that the thickness of the liquid film h(x, t) is
much smaller than the hydrodynamic extrapolation length
b = η/ζ. Then, the vertical variations of the horizontal ve-
locity ∂zv ∼ v/b are very small, and we can consider that
the horizontal velocity v(x, t) does not depend on the ver-
tical coordinate z (see Fig. 1). In this plug-flow regime,
volume conservation ∂xv + ∂zw = 0 leads to strain rates
∂xv and ∂zw that do not depend on z. Then, the horizon-
tal normal stresses σ = η∂xv−P (where P is the pressure
within the film) does not depend on z either, since the
Navier-Stokes equation projected along the Oz-direction
reads η∂zzw − ∂zP = 0. We neglect the Laplace pressure
(for it has only an influence on a very small part of the
rim, this point will be discussed in Sect. 2.4), as well as
the vapor pressure. This implies that the film-air inter-
face is stress free and that the vertical normal stress is
nil (in the ∂xh % 1 limit that applies if h0 % b). This
leads to the inner pressure P (x, t) = η∂zw = −η∂xv, and
to the horizontal normal stresses σ(x, t) = 2η∂xv. Consid-
ering the friction force −ζv(x, t) per unit surface on the
substrate, and since no exterior forces act on the surface
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of the film, the horizontal momentum equation integrated
over the thickness of the film reads

ζv =
∂ (hσ)

∂x
= 2η

∂

∂x

(
h

∂v

∂x

)
. (1)

This equation comes with two boundary conditions at the
edges of the film. The applied force per unit of length, |S|,
pushing the film away from the dry area, fixes the viscous
stress at the edge:

|S|
H

= −σ(L), (2)

where H = H(t) is the front height, and L = L(t) is
the dewetted distance (see Fig. 1). At the opposite of the
film, infinitely far away in the x > 0 direction, the velocity
must vanish and the film stays unperturbed. In addition,
assuming the fluid to be incompressible, the volume con-
servation leads to the relation

Dh

Dt
=

∂h

∂t
+ v

∂h

∂x
= −h

∂v

∂x
. (3)

The above equations can be solved at short times, when
h(x, t) is very close to h0. The velocity field is then simply
given by

v(x, t) = V exp
(
−x − L√

2∆

)
, (4)

where the length

∆ =
√

h0b =

√
h0η

ζ
(5)

is the one defined by BW, and the velocity

V =
|S|√
2ζηh0

=
∆√
2τ

(6)

deduced from equation (2), with τ = h0η/|S|, is the dewet-
ting velocity found by the same authors [4]. Note that the
lubrication approximation is not valid here since the sec-
ond derivative along the vertical direction ∂zzv ∼ V/b2 is
very small compared to the horizontal one ∂xxv ∼ V/∆2 =
V/(hb). Additionally to the evaluation of the dewetting ve-
locity already made by BW, the present mechanical anal-
ysis provides information about the film morphology. In-
deed, the evolution of the front height is given by equa-
tions (2) and (3):

H(t) = h0

(
1 +

t

2τ

)
. (7)

Since the velocity field decreases exponentially as one
moves away from the front, the film profile exhibits, at
short times, an asymmetric rim, with an exponential de-
crease of the height over the characteristic length ∆:

h(x, t) = h0

(
1 +

t

2τ
exp

(
−x − L√

2∆

))
. (8)

This shape is indeed the one observed by Reiter on AFM
images [19]. In the absence of surface tension, the damp-
ing of the film velocity by the friction over the length ∆ is
responsible for the rising of the asymmetric rim. However,
the present resolution of the equations of the flow only
holds for times shorter than τ , and does not allow to de-
termine the time evolution of the dewetting velocity V . In
the next section we review the energetic approach used by
BW. It reveals itself as the best way to establish the scal-
ing laws which characterize the dewetting of simple and
complex liquid films, completing the mechanical approach.

2.2 Energy balance

The dewetting velocity V for a Newtonian thin film has
already been evaluated by BW [4] using simple energetic
arguments. In this subsection we reconsider this problem
using the mechanical study developed above. The energy
balance imposes that the viscous dissipations within the
film T Ṡvisc, and the dissipation due to the friction at the
interface with the substrate T Ṡfric, match the work |S|V
done by the capillary forces per unit of time. The viscous
dissipation is related to the normal stresses in the hori-
zontal and vertical direction, and also to the shear stress.
One can compare the order of magnitude η∂zv ∼ ηV/b of
the latter to the one of the normal stresses η∂xv ∼ ηV/∆,
and show that it is negligible. Then, using the velocity
field (4), one gets the viscous dissipation

T Ṡvisc = η

∫ ∞

L
2h

(
∂v

∂x

)2

dx =
1√
2
ζ∆V 2 (9)

and the dissipation due to friction reads

T Ṡsurf = ζ

∫ ∞

L
v2dx =

1√
2
ζ∆V 2 . (10)

As expected, the equality |S|V = T Ṡvisc + T Ṡfric gives
the expression V = |S|/(

√
2ζ∆) = ∆/

√
2τ of the initial

dewetting velocity. We notice that, contrary to what BW
conjectured, the viscous dissipation is not negligible but
equal to the dissipation due to friction. Nevertheless, the
scaling of V remains unchanged whether T Ṡvisc = T Ṡfric

or T Ṡvisc % T Ṡfric.
The time evolution of the dewetting velocity can now

be determined from simple scaling arguments: the interfa-
cial dissipation is approximately T Ṡsurf & ζWV 2, while
from (1) we deduce the scaling (∂xv)2 ∼ ζv2/ηh, and the
viscous dissipation reads T Ṡvisc & ζWV 2, where W is the
rim width. This width is given by the volume conservation
and equation (7): W (t) & h0L(t)/(H(t)−h0) = L(t)2τ/t.
Therefore, the interfacial and viscous dissipations stay of
the same order and almost constant, even for larger times
than τ . Moreover, the dewetting velocity and the rim
width remain also approximately constant, as BW pre-
dicted it.

In what follows we will mostly be interested in estab-
lishing scaling laws concerning the dewetting of complex
fluids, whose dynamics cannot be solved exactly. We will
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Fig. 2. Numerical calculation of the shape of a Newtonian
film dewetting on a slippery substrate at different times. The
different curves are separated by the same time interval ∆/V0.
The inset shows the logarithm of (h−h0)/h0 at the same times.

Fig. 3. Numerical calculation of the horizontal velocity in a
Newtonian film dewetting on a slippery substrate at different
times. The different curves are separated by the same time
interval ∆/V0. The inset shows the logarithm of v/V at the
same times.

thus systematically use the assumption T Ṡvisc ! T Ṡfric,
and write the simplified energy balance |S|V & ζWV 2.
Then, the dewetting velocity V can be deduced from the
evolution of the rim width W & Lh0/(H − h0). Finally,
the scaling laws describing the whole dewetting dynamic
can be deduced from the evaluation of H(t):

|S|V & ζ
h0

H − h0
LV 2 (11)

for any kind of liquid, as long as the slip length b is large
compared with the film thickness. Since this analytical
method gives approximated results, it is of interest to com-
pare them with results obtained numerically.

2.3 Numerical calculations

We numerically integrated the equations of the flow (1)
and (3) along with the boundary condition (2) and a

Fig. 4. Numerical calculation of the reduced dewetting rim
width W/∆ versus the reduced time t/τ for a Newtonian film.
A linear-log plot is shown in the inset.

Fig. 5. Numerical calculation of the reduced dewetting veloc-
ity v(L)/V versus the reduced time t/τ for a Newtonian film.
The straight line represents t−0.2.

shooting procedure from the velocity V (t) = v(L, t) =
L̇(t) at the edge of the film, toward the target v = 0 far
in the Ox-direction, where the film should remain unper-
turbed. We consider finite-size films (much larger than ∆)
with a vertical front at the position x = L. This numeri-
cal method gives the fields h(x, t) and v(x, t) in the whole
film (see Figs. 2 and 3), from which we deduce H(t), L(t),
V (t) and W (t) (see Figs. 4 and 5). The width of the rim
W is defined as the distance between the edge and the
position where the thickness h(x, t) is 1/5 larger than the
initial thickness h0. It is of the same order as ∆ (from
Eq. (8) we deduce that W =

√
2∆ ln(5t/τ)). This numer-

ical work confirmed that both the velocity and the rim
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height decrease exponentially over the constant distance
∆, even after several times τ and H(t) " h0. It also con-
firmed that the dewetting velocity stays approximately
constant (a slow decrease ∼ t−0.2 is noticed). The exact
analytical result of a linear increase of the rim height H(t)
is verified. The very good agreement between the analyti-
cal mechanic and energetic approaches, and the numerical
method attests to the validity of the approximations made
in the analytical developments, as well as it attests to the
validity of the numerical results.

However, a constant dewetting velocity is not observed
experimentally, but rather a rapid decrease of the velocity,
proportionally to 1/t. We expect this discrepancy to come
from the non-Newtonian behavior of the polystyrene films
used in these experiments, and in particular from their
viscoelastic behavior (see Sect. 3).

If the system composed of equations (1) and (3) is
impossible to solve analytically for complex liquids, it can
be solved numerically for any kind of liquid. Hence, this
numerical code will be a very useful tool to study complex
liquids, and verify the predictions which can be made by
approximated analytical analysis. Before we address the
case of viscoelastic films, we will evaluate the effects of the
surface tension that has been neglected from the beginning
of this study.

2.4 Consequences of surface tension

The surface tension, of course, is always present, it has just
negligible effects during this first part of the rim growth.
Its principal consequence is to round the rim so that it
forms the Young angle θ with the substrate at equilib-
rium (−S & θ2γ/2 for small angles). The edge of the
rim is then cylindrical over the width 2h0/θ. The equilib-
rium is roughly reached around the time θh0/|S|, which is
small compared to the time τ = ηh0/|S| for small angles.
Therefore, one can consider that the rim presents a cylin-
drical pre-section at the front, whose width is δ & H/θ.
The rim remains highly asymmetric if δ % ∆, that is
to say as long as H(t) % θ∆. Hence, if h0 > θ∆, i.e.
θ <

√
h0/b, the asymmetric-rim regime does not exist.

On the other hand, if θ "
√

h0/b, the rim is highly asym-
metric as long as L(t) % θb. Given the constant dewetting
velocity V , the asymmetric-rim regime lasts until the time
θb/V = θ

√
b/h0(h0η/|S|). When L ≥ θb, the friction of

the cylindrical section on the substrate is more important
than the friction of the rest of the film. Note that simulta-
neously the Laplace pressure due to the curvature of the
exponentially decaying rim becomes of the same order as
the capillary pressure |S|/H, which is the Laplace pres-
sure within the cylindrical section. Thus, once L ≥ θb, the
“mature-rim” regime, first described by BW, begins: the
rim shape is round and symmetric as fixed by the surface
tension, whose width W ∼

√
h0L/θ is simply given by

volume conservation. The energetic approach can be ap-
plied in the “mature-rim” regime: the viscous dissipation
is still approximately given by the expression T Ṡvisc ∼
ζ∆V 2, while the interfacial dissipation T Ṡsurf ∼ ζWV 2

η0

Gη1

σ−σ

Fig. 6. Rheologic model of a Jeffreys viscoelastic liquid.

is much larger. Then, the energy balance reads |S|V &
ζ
√

h0L/θV 2, which gives a t−
1
3 decrease of the velocity [3,

4,12–15,18]. Note that the rheologic properties of the liq-
uid do not play any role in this regime, as the morphology
of the rim is imposed by the surface tension. The following
study will be only focussed on the building of the asym-
metric rim during which the surface tension is negligible,
assuming h0 < θ2b. This condition is well respected in [22,
23,25,26], where θ & 0.5 rad and b/h0 is larger than 104.

3 Viscoelastic films

3.1 Constitutive rheologic equation

One of the most important properties of polymer
molecules is that they can entangle one with each other.
These entanglements between chains give to polymer
melts a transient elasticity, which is call viscoelasticity.
In the simplest cases it can be characterized by an elas-
tic modulus G and a relaxation time τ1 (in the bulk, τ1

would be the reptation time of the polymer chains, but it
may be different in thin films), accounting for an elastic
solid behavior at times shorter than τ1, and for a Newto-
nian behavior, with the high viscosity η1 = τ1G, at longer
times. At very short times (t % τ0 % τ1) the rheology is in
fact dominated by the friction between monomers, giving
a low-viscosity Newtonian response, with η0 = τ0G % η1.
η0 and η1 are the elongational viscosities of the melt. With
the three parameters G, η0 and η1 we can set the relatively
simple constitutive equation, which corresponds to an im-
proved Maxwell’s model called Jeffreys’ model [5,15,24]
(see Fig. 6):

Gσ + η1σ̇ = Gη1γ̇ + η0η1γ̈, (12)

where γ̇ = ∂xv is the strain rate, and γ̈ is its time deriva-
tive. This linear constitutive equation can be rewritten
for the Fourier transforms σ̃(ω) and γ̃(ω). Note that using
the equivalence between the inverse of the frequency 1/ω
and the time t [29], one can define an effective viscosity
ηeff = Gt during the elastic regime (τ0 % t % τ1). This
regime is of great importance when the time τ1 is large. If
close to the glass transition, this time can easily be much
longer than a day. It is impossible, in these cases, to ne-
glect viscoelasticity in the study of the dewetting. Note
that the time τ0 is typically too short for the first Newto-
nian regime to be observed in dewetting experiments.
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3.2 Consequences on dewetting

Since τ0 is much smaller than τ1, the three characteristic
behaviors corresponding to the three regimes are very well
separated: short-times Newtonian response (η0, t % τ0),
intermediate-times elastic response (G, τ0 % t % τ1),
and long-times Newtonian response (η1, τ1 % t). Con-
sequently, they can be schematically transposed to the
dewetting dynamic:

– For times shorter than τ0, the viscoelastic liquid dewets
like a simple liquid, with the high constant velocity
V0 = |S|/

√
2ζη0h0, and with the birth of an asymmet-

ric rim of width ∆0 =
√

h0η0/ζ.
– At long times (t > τ1), the viscoelastic liquid also

dewets like a simple liquid, but with the constant ve-
locity V1 = |S|/

√
2ζη1h0 = V0

√
η0/η1 % V0, and

with the formation of an asymmetric rim of width
∆1 =

√
h0η1/ζ = ∆0

√
η1/η0 " ∆0.

– In between these two regimes, the elastic behavior of
the fluid will thus lead to a significant drop of the
dewetting velocity. We can study the dewetting dy-
namic using the energy balance equation (11), assum-
ing that the viscous dissipation and the time variation
of the elastic energy are smaller than or equal to the
interfacial dissipation. Then, we only need to evaluate
the height H(t) of the rim, which is given by equa-
tions (2, 3) and (12):

|S|
H

+ τ1
d
dt

(
|S|
H

)
= τ1G

(
Ḣ

H
+ τ0

d
dt

(
Ḣ

H

))
. (13)

At short times H(t) increases at the constant rate |S|/η0,
since the rheology is Newtonian-like. Around τ0 the poly-
mer chains are stretched, and the elasticity prevents the
height of the rim H(t) from increasing more at the same
rate. Then, only the disentanglement allows H(t) to in-
crease at the rate |S|/2η1. Therefore, between τ0 and
τ1 the height of the rim only weakly increases above
H0 & h0+|S|/G (assuming |S| < h0G, more generally, H0

is defined by (H0/h0) ln (H0/h0) = |S|/(h0G)). Hence, we
can consider H(t) as a constant, which imposes the width
of the rim W (t) to increase proportionally to the dewetted
distance L(t):

W & G

|S|h0L. (14)

Then, equation (11) gives

V (t) & |S|√
2ζGh0t

= V1

(
t

τ1

)−1/2

. (15)

As in the “mature-rim” regime, it is the increase of the
rim width which is responsible for the slowing-down of
the dewetting during the elastic regime. The rim width
increasing rate is here maximum, for its height is constant
in time. In this friction-driven dynamic, this maximum
increasing rate of the rim width leads to the most rapid
velocity decrease. Indeed, no other rheological model,
whether it uses viscoelasticity or shear thinning, can lead

Fig. 7. Numerical calculation of the reduced rim height H/h0

versus the reduced time t/τ0 for a viscoelastic film with τ1 =
100 τ0, and h0G/|S| = 10.

to a more rapid decrease of the velocity than t−1/2, if the
friction dominates and linearly depends on the slip ve-
locity. Interestingly, we remark that a purely elastic film
would dewet at a velocity scaling like t−1/2 over an infinite
distance, since the strong slippage allow the deformation
to remain finite.

Note that we could have simply deduced the scal-
ing law V (t) & V1

√
τ1/t = V0

√
τ0/t from the relation

V1/V0 =
√

τ0/τ1. Or else, we could have used the effective
viscosity ηeff = Gt in expression (6) of the dewetting ve-
locity, which simply gives the scaling V (t) & V0

√
τ0/t [30].

We confirmed these analytical predictions by the res-
olution of the equations of the flow with the numerical
method proposed above (see Figs. 7 and 8). The perfect
agreement between our analytical and numerical results
indicates that our assumption that the bulk viscous dissi-
pation and the elastic-energy variation are smaller than or
equal to interfacial dissipation does hold for the viscoelas-
tic liquid described by equation (12). In fact, a straight-
forward evaluation of the stored elastic energy would show
that its time derivative is equal to the interfacial dissipa-
tion.

As for a Newtonian liquid, the building up of the rim
precedes the “mature-rim” regime. The characteristic time
which marks the transition between these two regimes is
θb1/V1 = θ

√
b/h0(2h0G/|S|)τ1 > τ1, where b1 = η1/ζ is

the steady-state slip length.
According to our model, the viscoelasticity of polymer

films explains two characteristic features of the dewetting
of PS films [22,23]:
a) The proportionality between the dewetted distance and
the width of the rim is a consequence of the entanglements,
which prevent the height of the rim to increase between
τ0 and τ1.
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Fig. 8. Numerical calculation of the reduced dewetting veloc-
ity V/V0 versus the reduced time t/τ0 for a viscoelastic film
with τ1 = 100 τ0, and h0G/|S| = 10. The straight line repre-

sents t−
1
2 .

b) The very high initial dewetting velocity results from
the fact that the entanglements are unaffected at short
times (t < τ0), giving a ratio V0/V1 =

√
τ1/τ0 " 1.

On the other hand, the predicted decreasing law of
the velocity (V ∼ t−1/2) is slower than what is observed
(V ∼ t−1). We will see in the forthcoming section that
the power law of the velocity decrease is dependent on the
type of friction being effective between the film and the
substrate, and that in some situations the decrease of the
velocity can be greatly accelerated.

4 Non-linear friction

4.1 Origins and first consequences

Up to now, we have assumed the simplest possible form
for the friction law, that is a linear dependence of the
friction force on the velocity. The friction has not in fact
any strong reason to be so, especially because the sub-
strates are very often coated with a polymer layer in or-
der to be smooth and passive. For example, in many ex-
periments where PS film are used, the substrate is a sil-
icon wafer coated with a polydimethylsiloxane (PDMS)
mono-layer [18,19,22,23,25]. Several friction experiments
have been done on grafted or absorbed PDMS surfaces,
which have shown a very weak increase of the friction
force with velocity: Casoli et al. measured a friction force
increasing proportionally to V

1
3 between a PDMS elas-

tomer and an absorbed brush, and only like V
1
6 on dense

grafted brushes, for sliding velocities between 10µms−1

and 5mms−1 [6]. More recently Bureau et al. showed a
V

1
5 -dependence of the friction force between an elastomer

and a grafted brush, for sliding velocities ranging from

300µms−1 down to 0.01µms−1 [7], which is the veloc-
ity range of the dewetting experiments. These results are
reminiscent of a solid friction independent of the sliding
velocity.

A rather general expression of the friction force by sur-
face unit is

fr =





ζv, for v < vα ,

ζvα

(
v

vα

)1−α
, for v > vα ,

(16)

where α is a shear-thinning exponent smaller than unity
(α = 0 would correspond to the case of linear friction). Ac-
cording to the reported friction experiments, α could range
between 2/3 and 5/6. The effective friction coefficient is
then a decreasing function of v (as well as the inverse of
the slip length): ζeff (v) = ζ(vα/v)α, where vα is the veloc-
ity below which the friction coefficient remains equal to ζ
correspondingly to a linear friction. This linear regime can
be omitted if the dewetting velocity is much larger than vα

(when the velocity in most of the rim is larger than vα).
Hereafter, we assume this condition to hold during the
whole dewetting process, even if it may not be the case
at the end of the dewetting experiments. The increase of
the effective friction coefficient when decreasing the slid-
ing velocity lets us expect an intensified decrease of the
dewetting velocity for viscoelastic films. More tentatively,
the ζ−

1
2 -dependence of the rim width ∆ could bring about

a decrease of the rim width associated with the decrease
of the dewetting velocity, as observed experimentally.

Considering such a friction force and a Newtonian fluid
of viscosity η, the momentum equation (1) becomes

ζvα

(
v

vα

)1−α

= 2η
∂

∂x

(
h

∂v

∂x

)
. (17)

This latter relation replace equation (1) in the system
composed of equations (1) to (3) characterizing the dewet-
ting flow. As long as h remains of the order of h0, the
solution is given by

v(x, t) = Vα

(
1 − α

2
x − L√

2∆α

) 2
α

(18)

when x − L < ∆α, and v(x, t) = 0 elsewhere. Here, the
dewetting velocity

Vα =
((

2 − α

2

)
V 2

v α
α

) 1
2−α

& |S|
2

2−α

(ζηh0)
1

2−α v
α

2−α
α

(19)

is constant in time, as well as the rim width

∆α =
((

2 − α

2

)
V α

v α
α

) 1
2−α

∆ &
(

|S|
ζvα

) α
2−α

(
h0η

ζ

) 1−α
2−α

(20)
(V and ∆ are defined by Eqs. (5) and (6)). These ana-
lytical results are once again confirmed by the numerical
results.

As the importance of the viscoelasticity in the dewet-
ting has been demonstrated, we will now study the com-
bined effects of non-linear friction and viscoelasticity.
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4.2 Viscoelastic liquids

The study of the dewetting of a viscoelastic film in the
presence of non-linear friction is similar to the one we de-
veloped in the previous section with a linear-friction force.
The three time regimes will structure the dewetting pro-
cess in the same way: the short times and long times will
bring Newtonian-like dewetting, whereas the intermediate
times will be the place of an elastic response. Only the dis-
sipation due to the friction is modified, and equation (11)
is replaced by the energy balance equation:

|S|V & ζvα
h0

H − h0
LV

(
V

vα

)1−α

, (21)

where the time evolution of H(t) does not depend on the
friction law.

– Therefore, the viscoelastic film we described ear-
lier starts dewetting with the velocity V0α =
(( 2−α

2 )V 2
0 /v α

α )
1

2−α , building up a rim of characteristic
width ∆0α = (( 2−α

2 )V α
0 /v α

α )
1

2−α ∆0 until the time τ0.
– After the time τ1 the dewetting is much slower, sta-

bilized at the velocity V1α = (( 2−α
2 )V 2

1 /v α
α )

1
2−α =

V0α(η0/η1)
1

2−α , and the rim width is enlarged: ∆1α =
(( 2−α

2 )V α
1 /v α

α )
1

2−α ∆1 = ∆0α(η1/η0)
1−α
2−α .

– Between τ0 and τ1 the elasticity prevent the height
of the rim from increasing, and the increase of the rim
width W ∼ L leads to a rapid decrease of the dewetting
velocity:

V (t) & V1α

(
t

τ1

)− 1
2−α

(22)

in agreement with the numerical resolutions (see
Fig. 9). This result can be straightforwardly deduced
from the simple scaling V1α/V0α = (τ1/τ0)

1
2−α , or us-

ing the effective viscosity ηeff = Gt in equation (19).

The decrease of the velocity is sharpened by the non-
linearity of the friction. We notice that the decreasing law
is close to t−1 if the exponent α is around one, as mea-
sured in the friction experiments cited above. The very
weak variation of the friction force with the sliding veloc-
ity can thus explain the rapid decrease (V ∼ t−1) observed
experimentally [22,23,25].

Among the experimental observations, a mystery still
remains: the increase of the rim width proportionally to
the dewetted distance is followed by a decrease of W [22,
23,25]. In the model proposed above, the rim width al-
ways increases, especially during the elastic regime. This
increase is weaker when the friction is non-linear though:
W (t) & ∆1α(t/τ1)

1−α
2−α (it even becomes logarithmic when

α tends toward unity). However, the rim width is now a
function of the amplitude of the dewetting driving forces
(i.e. the capillary forces in usual cases: ∆1α ∼ |S|

α
2−α ).

A decrease of the rim width can thus be expected if the
driving forces decrease during the dewetting process.

A variation of the driving force with time would also
explain the important variations of the initial dewetting

1

0,1

0,01
0,1                          1                           10                         100

1/3
1/2

2/3
3/4

-1/2

-1

Fig. 9. Numerical calculations of the reduced dewetting veloc-
ities V/V0α versus the reduced time t/τ0 for a viscoelastic film
(τ1 = 100 τ0, h0G/|S| = 10) dewetting on several substrates
with the friction exponents α = 1/3, 1/2, 2/3, and 3/4.

velocity observed when varying the aging time. Such driv-
ing force could be the residual stresses resulting from the
spin coating process. In the following section, we study
the consequences of the presence of residual stresses which
could relax during the aging below Tg over a characteris-
tic time of the order of years. Above Tg, the characteristic
relaxation time is τ1.

5 Aging and residual stresses

5.1 Residual stresses

Systematic experimental studies have shown that the ini-
tial dewetting velocity decreases if the sample is held be-
low Tg for a given amount of time [25,26]. We will see in
this subsection that this variation of the initial dewetting
velocity with the aging time can be attributed to a varia-
tion of residual stresses present within the film at the very
beginning of the dewetting process. We first focus on the
dewetting with a linear-friction force.

Elastic stresses relax in a static viscoelastic liquid over
the characteristic time τ1. If present at the beginning of
the dewetting process, they will modify the dynamic dur-
ing the first two regimes (t < τ1), but not during the
long-time Newtonian regime (t > τ1). Thus, if the resid-
ual stresses increase the initial dewetting velocity, they
will also give a more rapid decrease of the velocity down
to the final velocity V1.

We consider a film with the frozen homogeneous posi-
tive horizontal stress σ0 at t < 0. The power delivered by
the residual stresses is given by

∫
h(x, t)σ(x, t)γ̇(x, t)dx,

which is simply equal to h0σ0Vi, at t = 0+, where Vi

is the initial dewetting velocity. Additionally, this stress
modifies the evolution of the height of the rim with time.
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Fig. 10. Numerical calculations of the reduced dewetting ve-
locities V/V0 versus the reduced time t/τ0 for a viscoelastic
film (τ1 = 100 τ0, h0G/|S| = 10) with the residual stresses
σ0/G = 0, 0.2, 0.4, and 0.6, dewetting on a substrate with a
linear friction.

Equation (13) still holds, but the initial conditions are dif-
ferent. Then, the initial growth rate of the height H(t) is
|S|/η0 + σ0h0/η0. Now, adding the power h0σ0Vi to the
left-hand side of equation (11) with the initial increasing
rate of H(t) calculated above, we obtain the initial dewet-
ting velocity

Vi = V0

(
1 +

σ0h0

|S|

)
. (23)

As expected, the residual stresses are responsible for a
higher initial dewetting velocity. They are in fact equiva-
lent to an additional capillary force σ0h0 by unit of length.
As the increasing rates of H(t) and L(t) are enhanced sim-
ilarly, the rim width is not modified by the presence of
residual stresses: W & ∆0 until τ0. This is due to the fact
that ∆0 does not depend on the dewetting driving force
|S| if the friction is linear, contrary to V0 which linearly
depends on it.

Around τ0 the elasticity imposes a slowing-down of
the increase of H(t), down to the rate |S|/η1. Between τ0

and τ1 the height of the rim is approximately constant,
H(t) & h0 + |S|(1+h0σ0/|S|)/G, and the residual stresses
have not relaxed much yet. Hence, equation (11) with the
additional contribution of the residual stresses still gives
a decrease of the dewetting velocity proportional to t−1/2.
The stressed film is thus perfectly equivalent to a relaxed
film pushed by the force |S|+h0σ0 by unit of length until
the time τ1. The decrease is more rapid only around the
time τ1 as the residual stresses relax within the film [31].
At longer times than τ1, we recover the dewetting veloc-
ity V1 and rim width ∆1. These results agree with the
numerical resolution of the problem (see Fig. 10).

Finally, for positive residual stresses lead to an en-
hancement of the dewetting velocity, their presence could
suitably explain a decrease of the initial dewetting velocity

with the aging time. We note that when using a linear-
friction force, the evolution of the rim width with time
is not qualitatively modified by the residual stresses: W
still increases from ∆0 to ∆1 during the elastic regime,
and then levels off. The non-linear friction could explain
the existence of a maximum of the rim width, whose am-
plitude decreases with the aging time, for it leads to a
dependence of the rim width on the dewetting velocity.

5.2 Residual stresses plus non-linear friction: the
winning duo

We now combine the non-linear friction and residual
stresses. We have shown in the previous subsection that
the residual stresses are equivalent to an additional cap-
illary force σ0h0 until the time τ1. Therefore, using the
results of the previous section concerning the dewetting
with a non-linear–friction force, the initial dewetting ve-
locity simply reads

Vi = V0α

(
1 +

h0σ0

|S|

) 2
2−α

. (24)

In the same way, the initial rim width, which depends
on the capillary forces when the friction is non-linear,
is increased by the presence of residual stresses: ∆i =
∆0α(1 + h0σ0/|S|)

α
2−α . Then, from τ0 to τ1, the dewet-

ting velocity decreases with time as V (t) & Vi(t/τ1)−
1

2−α ,
while the rim width increases up to its maximum value:

∆m & ∆1α

(
1 +

h0σ0

|S|

) α
2−α

. (25)

This is indeed the maximum of the rim width in time, as
the relaxation of the residual stresses around τ1 leads to
a decrease of the dewetting velocity down to the “equili-
brated” velocity V1α, as well as to a slow decrease of the
rim width down to its “equilibrated” value ∆1α. At this
point, the decrease of W (t) is as slow as the increase of
L(t), for only the front of the rim is moving. Then, when
t " τ1, one recovers the long-times Newtonian-like dewet-
ting. The decrease of the rim width can thus be explained
by the combined consequences of the residual stresses and
the non-linearity of the friction law. As a matter of fact,
∆m is higher than ∆1α only if the exponent α and σ0

are not nil. This striking result is also obtained with the
numeric resolutions of the flow equations (see Figs. 11
and 12).

Interestingly, the residual stresses σ0 can come off from
the relation between the initial dewetting velocity Vi and
the maximum rim width ∆m:

Vi = vα

(
ζ

h0

) 1
α

η
− 1

2−α

0 η
− 2(1−α)

2−α

1 ∆
2
α

m . (26)

The exponent α can thus be deduced from a log-log plot
of Vi as a function of ∆m, for dewetting experiments with
various values of the residual stress. Furthermore, there
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Fig. 11. Numerical calculations of the reduced dewetting ve-
locities V/V0α versus the reduced time t/τ0 for a viscoelas-
tic film (τ1 = 100 τ0, h0G/|S| = 5) with the residual stresses
σ0/G = 0, 0.2, 0.4, 0.6, and 0.8, dewetting on a substrate with
the friction exponents α = 2/3.
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Fig. 12. Numerical calculations of the reduced rim width
W/∆0α versus the reduced time t/τ0 for a viscoelastic film
(τ1 = 100 τ0, h0G/|S| = 5) with the residual stresses σ0/G = 0,
0.2, 0.4, 0.6, and 0.8, dewetting on a substrate with the friction
exponents α = 2/3.

is a weak dependence of Vi/∆
2
α

m on the viscosity η1, and
thus on the molecular weight of the polymer, when α is
close to unity. Then, log-log plots corresponding to dif-
ferent molecular weights can be superposed in order to
measure α. This has been done in [26], giving a friction
exponent α = 0.8 ± 0.15. This value is very close to the
values presented above for the friction between a PDMS
elastomer and a grafted brush [7], although almost no in-
terpenetration is expected between the PS film and the

PDMS layer. The non-linear relation between friction and
velocity could thus be a consequence of the rheologic re-
sponse of the brush to a shear strain only, i.e. shear thin-
ning, and not to a variation of the interdigitation with the
sliding velocity [32].

Once the friction exponent α is determined, a quantita-
tive evaluation of the residual stresses becomes possible.
The quantities τ1 (the time corresponding to the maxi-
mum rim width), V1α, and ∆1α can directly be deduced
from the plots of W (t) and L(t). From these measures we
can calculate the ratio h0G/|S| = ∆1α/(τ1V1α). Then σ0

is simply deduced from the measurement of ∆m. It shows
that σ0 can be as large as G [26], in agreement with [28],
which is significant. Note that since the time τ0 cannot be
accurately evaluated, one cannot obtain a precise evalua-
tion of ζ and vα.

It has been noticed that the characteristic relaxation
time of elastic constraints τ1 is significantly shorter than
the corresponding relaxation time in bulk (i.e. the rep-
tation time of the polymer chains) [25,26], which is con-
sistent with the fact that the entanglement length should
be longer in films whose thickness is of the order of the
molecules size [36,37]. Still, the question of the structure of
the chains in a spin-coated film is nowadays unanswered.
Are they very stretched and weakly entangled, or struc-
tured in isolated balls with small interpenetration?

Finally, the idea of a non-linear friction proves its per-
tinence by the fact that the exponent α deduced from the
relation between ∆m and Vi, gives the good scaling law
(V ∼ t−0.8) for the decrease of the dewetting velocity.

6 The case of circular holes

When the dewetting process is not initiated from an edge,
but from a circular hole, BW showed that the dynamic
is first dominated by viscous dissipation within the radial
flow, and that the consequences of the friction on the sub-
strate are negligible [4]. The growth of the hole is then
exponential in time for a Newtonian liquid. Now that the
viscoelasticity has been shown to be an important physical
property concerning the dewetting from a straight edge, it
is of interest to study the role it plays during the early part
of the dewetting from a hole (i.e. neglecting the friction
on the substrate). At the same time, the consequences of
residual stresses should be addressed.

In this two-dimension problem, the cylindrical coordi-
nates should be used, giving constitutive equations similar
to equation (12):

σr − νσθ + τ1(σ̇r − νσ̇θ) = η1 (γ̇r + τ0(γ̈r − νγ̈θ)) ,

σθ − νσr + τ1(σ̇θ − νσ̇r) = η1 (γ̇θ + τ0(γ̈θ − νγ̈r)) ,
(27)

in the radial and the orthoradial directions, with τ0 =
η0/G, τ1 = η1/G (τ0 % τ1), and ν is Poisson’s ratio. This
Jeffreys’ model can be approximated by a Voigt’s model at
short times (for t % τ1, σ % τ1σ̇), which means that the
relaxation of the elastic stress due to the disentanglements
of the polymer chains is negligible. At long times it can
be approximated by a pure Maxwell’s model (for t " τ0,
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γ̇ " τ0γ̈), as the dissipation due to the monomers viscosity
η0 is negligible compared to the dissipation due to the
disentanglements of the polymer chains η1. The opening
of holes in a viscoelastic film can then be divided into two
parts that overlap: t % τ1 and t " τ0.

6.1 Early opening: Voigt’s model

In this regime, as no relaxation of the stress is allowed,
the elastic stress corresponding to the elastic modulus G,
and the viscous stress corresponding to the viscosity η0

are simply superposed:

σ̇r − νσ̇θ = G (γ̇r + τ0(γ̈r − νγ̈θ)) ,

σ̇θ − νσ̇r = G (γ̇θ + τ0(γ̈θ − νγ̈r)) .
(28)

We can first consider the opening of a hole of initial ra-
dius R0 in a purely elastic film initially homogeneously
constrained with the stress σ0. Applying a pressure p at
the edge, in the small deformation approximation the film
stays uniformly flat, with the thickness h0, giving the
repartition of stress [38],

σr(r) = σ0 − (σ0 + p)
R2

r2
,

σθ(r) = σ0 + (σ0 + p)
R2

r2
,

(29)

for r " R, and the hole radius R = R0 exp((1 + ν)(σ0+
p)/G).

Considering a purely Newtonian film of viscosity η0,
the repartition of stress corresponding to the velocity field
v(r) = ṘR/r (constant thickness) is

σr(r) = −η0
RṘ

r2
,

σθ(r) = η0
RṘ

r2
.

(30)

The sum of these two contributions, elastic and viscous,
with the boundary condition σr(R) = −|S|/h0, and the
relation p(R) = −σ0 + G ln(R/R0)/(1 + ν) leads to the
dynamic equation

Ṙ

R
+

G

(1 + ν)η0
ln

(
R

R0

)
=

|S|
η0h0

+
σ0

η0
(31)

whose solution reads

R(t) = R0 exp
[
(1 + ν)|S|

h0G

(
1 +

σ0h0

|S|

) (
1 − e

−t
(1+ν)τ0

)]
.

(32)
Hence, the initial opening law is exponential until the
hole radius reaches R∗

0 = R0 exp((1 + ν)(|S|/h0G)(1 +
σ0h0/|S|)) around the time (1 + ν)τ0. Then, the hole ra-
dius does not change until the stress relaxes (t ∼ τ1). This
result can also be obtained from the energy balance be-
tween the power 2π|S|RṘ released by the capillary forces,
and the sum of the viscous dissipation −2πη0h0Ṙ2 and the

variation of the elastic energy 2πp(R)RṘ. We note that,
unlike in the edge geometry, a purely elastic film would
not dewet more than over the distance R∗

0.
During this regime, while σr(R) is constant in time,

σθ(R) increases linearly up to σmax & 2σ0 + |S|/h0 at
time (1 + ν)τ0, which is more than twice its initial value
σ0. Hence, this opening could lead to the appearance of
cracks normal to the edge of the hole, if σmax is larger
than the rupture threshold of the polymer chains. Such
cracks have indeed been observed by Damman et al. [39].

6.2 Second step: Maxwell’s model

At times larger than τ0, the dissipation due to the
monomers viscosity η0 is weak compared to the dissipa-
tion due to the relaxation of the elastic stress, which can
be associated to a viscosity η1 % η0:

σr − νσθ + τ1(σ̇r − νσ̇θ) = η1γ̇r ,

σθ − νσr + τ1(σ̇θ − νσ̇r) = η1γ̇θ .
(33)

In this Maxwell’s model, the relaxation of the stress over
the characteristic time τ1 gives a viscous dissipation by
volume unit equal to −(σr(σr − νσθ) + σθ(σθ − νσr))/η1,
which is the elastic energy uel divided by τ1/2. The vari-
ation of the elastic energy by volume unit with time is
simply ˙uel = (σr(σ̇r − νσ̇θ) + σθ(σ̇θ − νσ̇r))/G. Finally,
the sum of the two, σrγ̇r + σθγ̇θ, is the power delivered
to the material. The conservation of the energy imposes
the equality between the integral of this quantity over all
the volume of the material and the power released by the
capillary forces:

2π|S|RṘ = 2πh0

∫ ∞

R
(σrγ̇r + σθγ̇θ)rdr. (34)

Assuming the film to stay flat during its opening, the
stress distribution is simply

σr(r) = σ∞ −
(

σ∞ +
|S|
h0

)
R2

r2
,

σθ(r) = σ∞ +
(

σ∞ +
|S|
h0

)
R2

r2
,

(35)

where σ∞ = σ0 exp (−t/τ1) is the relaxing stress, infinitely
far from the edge of the hole. Using relations (33), and (35)
in equation (34) leads to the result [40]

Ṙ

R
=

1 + ν

τ1

(
|S|
h0G

+
σ∞(t)

G

)
(36)

in the small deformation limit corresponding to |S|/h0 %
G, and σ∞/G %

√
|S|/h0G. Out of these limits the film

no longer stays flat. Then, in the small deformation limit,
the opening of the hole is quasi-exponential:

R(t) = R∗
0 exp

[
(1 + ν)

(
|S|
h0G

t

τ1
+

σ0

G

(
1 − e−

t
τ1

))]
.

(37)
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Fig. 13. Time evolution of the radius R/R0 of a hole opening
in a free-standing viscoelastic film (τ1 = 100 τ0, h0G/|S| = 10),
with the residual stresses σ0h0/|S| = 0 (plain line), 1/2, 1, and
2 (dotted line).
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Fig. 14. Time evolution of the opening velocity τ0Ṙ/R0 of a
hole in a free-standing viscoelastic film (τ1 = 100 τ0, h0G/|S| =
10), with the residual stresses σ0h0/|S| = 0 (plain line), 1/2,
1, and 2 (dotted line).

As the solution equation (32) we obtained for the first
regime is approximately constant after the time τ0, and as
the above solution equation (37) in the second regime very
weakly varies before τ0, we can build an approximated
solution valid at all times replacing R∗

0 in equation (37)
by the solution equation (32) (see Figs. 13 and 14).

Finally we note that, as in the edge geometry, the
initial dewetting velocity is high and independent of η1

(Ṙ ∼ R0/τ0). On the other hand, the viscoelasticity leads,
in the hole geometry, to a sudden fall of the dewetting ve-
locity around τ0. The velocity hence reaches a low value,
which depends on η1 (Ṙ ∼ R0/τ1), at the very short time
(1 + ν)τ0 ln(τ1/τ0) ∼ τ0, while it progressively decreases
between τ0 and τ1 in the edge geometry. For the time τ0

is typically not accessible to the experimentalists, the ini-
tial high dewetting velocity should not be observed in the
hole geometry. This is in agreement with the observations
of Reiter, Damman et al. [22,23] where the observed initial
dewetting velocity is systematically orders of magnitude
higher in the edge geometry than in the hole geometry.

Furthermore, this model predicts a very slow increase
of the opening velocity, with the characteristic rising time
(|S|/h0G)τ1 < τ1, between τ0 and τ1, while the velocity
rapidly decreases between τ0 and τ1 in the edge geome-
try. This explains the other observation of an almost con-
stant opening velocity of the holes, while in the meantime
the dewetting velocity at the edge of the film decrease of
several orders of magnitudes with a t−1 law [22,23]. The
variation of the dewetting velocity is even weaker in the
presence of residual stress; the weak increase is replaced
by a weak decrease of the velocity between τ0 and τ1, if
σ0 > |S|/h0 (see Fig. 14). As we could have anticipated,
the opening is accelerated by the residual stress until the
time τ1 where the stress relaxes, and then the velocity re-
covers an exponential growth. This characteristic behavior
(see Fig. 13) is what Roth et al. [16] observe during the
opening of holes in free-standing PS films of large molecu-
lar weights close to the glass transition. The high similar-
ity between their experimental plots and the theoretical
curves of Figure 13 leads to the conclusion that their PS
films also present residual stresses. Actually, these films,
formed by spin coating, are not annealed above the glass
transition.

Eventually, as for Newtonian films, the friction on the
substrate will become dominant when the hole radius R
is larger than the distance ∆1α (this corresponds to t >
τ1(h0G/|S|) ln(∆1α/R∗

0)). Then the dewetting from holes
becomes comparable to the dewetting from edges.

7 Conclusion

In this paper we have reviewed some important features of
the dewetting of slipping polymer films. One of the most
important properties of entangled polymer liquids is vis-
coelasticity, whose basic characteristics can by captured
by a Maxwell’s model, with the elastic modulus G and
the relaxation time τ1. One of the consequences of the
viscoelasticity on the dewetting of the film from a straight
edge is a slowing-down of the dewetting velocity over the
time τ1. The scaling of this decreasing law depends on
the friction between the film and the substrate. A conse-
quence of the friction is the formation of a rim, which stays
very asymmetric until a characteristic time which is typi-
cally larger than τ1. The time evolution of the rim width
together with the dewetted distance, which is easy to fol-
low experimentally, give important information about the
friction and about the elasticity of the film. Viscoelastic
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Fig. 15. Schematic representation of the different dewetting
dynamic regimes in both the straight-edge (black line) and the
hole geometry (gray line): (1) Short-time dewetting, (2) elas-
tic regime with negligible influence of the friction in the hole
geometry, (3) elastic regime with strong influence of the fric-
tion in both geometries, (4) Newtonian asymmetric-rim regime,
(5) mature-rim regime.

films can contain internal residual stress if stored below
the glass transition temperature. These residual stresses
accelerate the onset of the dewetting process, and leave a
signature on the time evolution of the rim width, which
allows a quantitative evaluation. The signature of the vis-
coelasticity and the residual stresses are also visible when
the dewetting is initiated from a hole, giving a very fast
first opening stage, followed by a slow, quasi-exponential,
growth of the hole radius. A schematic representation of
the dewetting dynamic in both the straight-edge and the
hole geometry is shown on Figure 15. We can infer that, as
the residual stresses increase the first opening stage veloc-
ity of holes, the residual stresses can initiate the formation
of holes from thickness defects [41], which could explain
the decrease of the holes number density with the aging
time of the PS samples also observed in [25].
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We note that Ṙ/R diverges if |S|/h0 = G/(1 + ν), or
σ∞/G =

√
|S|/((1 + ν)h0G), which is due to the fact

that the film cannot stay flat any more. Interestingly, if
there are no capillary forces, |S| = 0, the hole radius
stays constant, whatever the value of the residual stress
σ∞. On the other hand, if one adds a weak capillary force
|S|/h0G < (1 + ν)(σ∞/G)2, their is no solution to the en-
ergy balance because the assumption that the film stays
flat does not hold any more.
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