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We present the first direct measurement of the elastohydrodynamic lift force acting on a sphere moving
within a viscous liquid, near and along a soft substrate under nanometric confinement. Using atomic force
microscopy, the lift force is probed as a function of the gap size, for various driving velocities, viscosities,
and stiffnesses. The force increases as the gap is reduced and shows a saturation at small gap. The results
are in excellent agreement with scaling arguments and a quantitative model developed from the soft
lubrication theory, in linear elasticity, and for small compliances. For larger compliances, or equivalently
for smaller confinement length scales, an empirical scaling law for the observed saturation of the lift force is
given and discussed.
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Lubricated contact between deformable solids is a
situation widely encountered and studied in geophysical
[1], as well as industrial and engineering [2] contexts.
Central to such elastohydrodynamic settings is the coupling
between the local hydrodynamic pressure induced by the
fluid flow and the deformation of the confining solids.
Recently, such a coupling was studied for much more
compliant solids and smaller length scales, in the context of
soft matter in confinement and at interfaces [3]. Indeed,
it might play a crucial role in the motion of various
physiological and biological entities [4,5]. Furthermore,
through surface force apparatus [6–9], atomic force micros-
copy [10–14], and optical particle tracking [15], it offers an
alternative strategy for micro- and nanorheology of soft
materials, with the key advantage of avoiding any solid-
solid adhesive contact.
In such a soft-matter context, a novel elastohydrody-

namic lift force was theoretically introduced for elastic
bodies moving past each other within a fluid [16], and
further explored and generalized through: the motion of
vesicles along a wall [17,18], different elastic media and
geometries [19–21], added effects of intermolecular inter-
actions [22], self-similar properties of the soft lubricated
contact [23], the inertial-like motion of a free particle [24],
viscoelastic effects [25], an equivalent emerging torque
[26], and the case of membranes [27,28]. Essentially,
any symmetric rigid object moving within a viscous fluid
and along a nearby soft surface is repelled from the latter by
a normal force. This force arises from a symmetry breaking
in the contact shape and the associated low-Reynolds-
number flow, due to the elastohydrodynamic coupling
introduced above. Specifically, for a nondeformable surface,

and an even contact shape, the lubrication pressure field
(i.e., the dominant hydrodynamic stress) is antisymmetric,
resulting in a null net normal force. In contrast, a soft
surface is deformed by the pressure field which then loses
its symmetry, resulting in a finite normal force. We note
that the qualitative behavior is similar for the opposed
situation of a soft object moving within a viscous fluid
along a rigid surface.
Theoretical calculations show that, as the gap between

the object and the soft substrate reduces, the force
increases. Eventually, at very small gap, the competition
between symmetry breaking and decreasing pressure leads
to a saturation of the lift force [19–22].
Despite the above theoretical literature, experimental

evidence for such an elastohydrodynamic lift force remains
recent and scarce [29,30]. Measurements of the rising speed
and the distance to a vertical wall of a bubble allowed to
extract an analogous normal force acting on the bubble
[31]. A qualitative observation was reported in the context
of smart lubricant and elastic polyelectrolytes [32]. A study,
involving the sliding of an immersed macroscopic cylinder
along an inclined plane, precoated with a thin layer of gel,
showed an effective reduction of friction induced by the lift
force [33]. Then, the optical tracking of the driven motion
of a microparticle in a microfluidic channel decorated with
a polymer brush revealed the potential importance of this
force in biological and microscopic settings [34]. From
the gravitational sedimentation of a macroscopic object
along a vertical membrane under tension, another study
observed an important normal drift, showing the amplifi-
cation of the effect for very compliant boundaries induced
by slender geometries [35]. The measurement of the shape
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deformation of a levitating droplet over a moving wall
was also used to probe the effects of the lift force [36].
Nevertheless, while this experimental literature provides
confidence in the existence of the elastohydrodynamic lift
force, as well as in its importance at small scales and for
biology, no direct force measurement was performed to
date and the saturation at the nanoscale was not yet
observed.
In this Letter, we report on the first direct measurement

of the elastohydrodynamic lift force acting on a sphere
moving within a viscous liquid and along a soft substrate,
under nanometric confinement. Using atomic force micros-
copy (AFM), the lift force is probed as a function of the gap
size, for various driving velocities, viscosities, and stiff-
nesses. The results are compared to scaling arguments and a
novel quantitative model developed from the soft lubrica-
tion theory, in linear elasticity, and for small compliances.
For larger compliances, a saturation of the lift force is
observed and its empirical scaling law is discussed.
A schematic of the experimental setup is shown in Fig. 1.

The experiment is performed using an AFM (Bruker,
Bioscope) equipped with a cantilever holder (DTFML-
DD-HE) that allows working in a liquid environment. We
use a spherical borosilicate particle (MO-Sci Corporation)
with a radius R ¼ 60� 1 μm and a roughness of 0.9 nm
measured over a 1 μm2 surface area. That sphere is glued at
the end of a silicon nitride triangular shaped cantilever
(DNP, Brukerafmprobes) using epoxy glue (Araldite,
Bostik, Coubert). The soft samples are fixed on a multiaxis
piezo-system (NanoT series, Mad City Labs), which allows
(i) to control and scan the gap distance d between the
sphere and the sample by displacing the sample vertically;
and (ii) to vibrate the sample transversally at a frequency
f ¼ ω=ð2πÞ ¼ 25 or 50 Hz, and with an amplitude A
ranging form 3.6 to 36 μm. Note that the normal displace-
ment speed 20 nm=s being much smaller than the smallest
transversal velocity amplitude Aω ¼ 0.36 mm=s, the for-
mer can be neglected and a quasistatic description with
respect to the normal motion is valid. Using the drainage
method [37], the modified stiffness kc ¼ 0.21� 0.02 N=m

of the cantilever when the sphere is attached to it is
determined using a rigid silicon wafer as a substrate,
and for large enough gap distances (d¼200–20000 nm).
The studied polydimethylsiloxane (PDMS) substrates are
prepared as follows. First, uncross-linked PDMS (Sylgard
184, Dow Corning) and its curing agent are mixed into
three different solutions, with different mixing ratios (10:1,
20:1, 30:1). Following a preliminary degassing process, a
few droplets of each solution are spin coated on a glass
substrate during a minute to get a sample of thickness in the
25–30 μm range. This is followed by an annealing step, in
an oven at 50 °C and during 24 h, in order to promote an
efficient cross-linking. The measured Young’s moduli E
of the samples (10:1), (20:1), and (30:1) are, respectively,
ð1455� 100Þ kPa,ð600� 50Þ kPa, and ð293� 20Þ kPa,
where the Poisson ratio is fixed to ν¼0.5 since cross-
linked PDMS is an incompressible material to a very good
approximation. At the Young’s moduli and low frequencies
studied here, the loss modulus of PDMS is negligible [38].
The viscous liquids employed are silicone oil and 1-decanol
with dynamic viscosities η ¼ 96 mPa s and 14.1 mPa s,
respectively.
Using scaling arguments, the lift force acting on a sphere

immersed in a viscous fluid and moving at constant
velocity V, near and parallel to a semi-infinite incompress-
ible elastic substrate of shear modulus G ¼ E=½2ð1þ νÞ�,
reads [20]

Flift ∼
η2V2

G
R5=2

d5=2
; ð1Þ

in the limit of small dimensionless compliance, κ ¼
ηVR=ðGd2Þ ≪ 1. Note that, in this limit, κ corresponds
to the ratio between substrate’s deformation and gap
distance. Note also that, due to Galilean invariance, moving
the substrate at constant velocity instead of the sphere leads
to the same lift force. In view of the low frequencies at
which the substrate is oscillating, and since inertial effects
are negligible for such a confined viscous flow, this
invariance and the expression of the lift force above remain
excellent approximations in our case—with the substitution
V ¼ Aω sinðωtÞ in Eq. (1). In addition, in all experiments,
the hydrodynamic radius

ffiffiffiffiffiffiffiffiffi
2Rd

p
being much smaller than

the thickness of the soft substrate, the latter can indeed be
described as semi-infinite. Interestingly, with such a peri-
odic driving, and since the lift force depends on the squared
velocity, it can be expressed as two additive components:
(i) a time-independent one ∼η2A2ω2R5=2=ð2Gd5=2Þ; and
(ii) a component oscillating at double frequency 2f.
Focusing only on the former, it is measured though a
temporal average F ¼ hFNi of the instantaneous normal
force FN recorded by AFM (see Fig. 1).
Figure 2 shows the force F as a function of the gap

distance d, for rigid (silicon wafer) and soft substrates
(PDMS 20:1). To determine the gap distance, we take into
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FIG. 1. Schematic of the experimental setup. The soft PDMS
sample is fixed to a rigid piezo stage that is transversally
oscillated along time t, at angular frequency ω, and with
amplitude A. A rigid borosilicate sphere is glued to an AFM
cantilever and placed near the substrate, with silicone oil or 1
decanol as a viscous liquid lubricant. The normal force FN
exerted on the sphere, at a gap distance d from the surface, is
directly measured from the deflection of the cantilever.
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account the cantilever’s deflection induced by the normal
force, by solving the equation: d ¼ Dþ Z, where D is the
raw gap distance imposed by the piezo, and Z is the
measured DC cantilever’s deflection. As a remark, in most
cases studied here, the typical substrate’s deformation,
~F=ðπE� ffiffiffiffiffiffiffiffiffi

2Rd
p Þ, where E� ¼ E=ð1 − ν2Þ [8], remains much

smaller than the cantilever’s deflection. For the rigid case,
no finite force is detected above the current nanoNewton
(nN) resolution, at all distances. This is expected, since for
such a hard surface (Young’s modulus in the 100 GPa
range), the elastohydrodynamic effects occur at gap dis-
tances much smaller than the ones typically probed here
[6]. As a remark, the fact that no force—even purely
hydrodynamic—is measured in this case is a direct con-
firmation for the validity of the quasistatic description with
respect to the imposed normal motion of the sphere. In
sharp contrast, for the soft case, a systematic nonzero force
is measured, and observed to increase as the gap distance
is reduced. Furthermore, as shown in the inset, the force
asymptotically scales as F ∼ d−5=2 at large gap distances, in
agreement with the prediction of Eq. (1). Interestingly, at
smaller gap distances, a saturation of the lift effect is
observed, as reported previously [20,33].
Having tested the asymptotic dependence of the force

with the main geometrical parameter, i.e., the gap distance,
which showed a first evidence of the lift, we now turn to the
other key elastohydrodynamic parameters appearing in
Eq. (1): the velocity amplitude Aω, the viscosity η of the
liquid, and the shear modulus G of the substrate. To test the
dependences of the force with those three parameters, we
introduce two dimensionless variables: the dimensionless
compliance κ ¼ ηVR=ðGd2Þ, and the dimensionless force
F=F� with F� ¼ ηVR3=2=d1=2, where V is systematically

replaced by its root-mean-squared value Aω=
ffiffiffi
2

p
due to the

temporal averaging introduced above. In such a represen-
tation, Eq. (1) becomes F=F� ∼ κ. In Fig. 3, we thus plot F
as a function of d, and in the rescaled form, F=F� as a
function of κ, for various sets of parameters: two different
oscillation amplitudes [Fig. 3(a)], two different oscillation
frequencies [Fig. 3(b)], two different viscosities [Fig. 3(c)],
and three different shear moduli [Fig. 3(d)]. In the inset of
each of those panels, we first observe at small κ that F=F�
is linear in κ, and that the curves for various values of the
varied parameter collapse with one another, which validates
further Eq. (1). Moreover, around κ ∼ 1, a deviation from
the previous asymptotic behavior is observed, leading to a
maximum prior to an interesting decay at large κ. In
addition, the collapse for various values of the varied
parameter is maintained, indicating that even at large
dimensionless compliance κ, the dimensionless force
F=F� remains a function of κ only. This suggests that
the same physics, coupling lubrication flow and linear
elasticity, is at play at large κ.
We now rationalize the missing prefactor in Eq. (1), and

discuss further the behavior at large κ. For the first purpose,
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FIG. 2. Temporal average F of the normal force FN (see Fig. 1)
as a function of the gap distance d to the substrate, for both rigid
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therein indicates a −5=2 power law.
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FIG. 3. Measured temporal-averaged forceF as a function of gap
distance d to the soft PDMS substrates, and (insets) dimensionless
force F=F� as a function of dimensionless compliance κ in
logarithmic scales, for various sets of parameters. (a) Two different
velocity amplitudes (as indicated) obtained with different oscil-
lation amplitudes are investigated. The substrate is cross-linked
PDMS (10:1), and the liquid is 1-decanol with viscosity
η ¼ 14.1 mPa s; (b) two different velocity amplitudes (as indi-
cated) obtained with two different working frequencies are inves-
tigated. The substrate is cross-linked PDMS (10:1), and the liquid
is silicone oil with viscosity η ¼ 96 mPa s; (c) two different liquids
with different associated viscosities (as indicated) are investigated.
The substrate is cross-linked PDMS (10:1), and the velocity
amplitudes are Aω ¼ 0.36 mm=s and Aω ¼ 2.32 mm=s for sili-
cone oil (η ¼ 96 mPa s) and 1-decanol (η ¼ 14.1 mPa s) respec-
tively; (d) three different shear moduli (as indicated) of the
substrate are investigated. The liquid is silicone oil with viscosity
η ¼ 96 mPa s, and the velocity amplitude is Aω ¼ 0.57 mm=s.
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we go beyond scaling analysis [20] and develop a model
based on soft lubrication theory [19–26] for a rigid sphere
translating in a viscous fluid and along a semi-infinite
incompressible elastic wall. Details are provided in the
Supplemental Material [39], and lead to the expression of
the lift force at first order in κ:

Flift ≃ κ

Z
d2rp1ðrÞ ≈ 0.416

η2V2

G

�
R
d

�
5=2

; ð2Þ

where κp1ðrÞ is the first-order lubrication pressure term,
and r ¼ ðx; yÞ is the coordinate vector in the horizontal plan
[see Fig. 1(a)].
Equation (2) thus provides the missing prefactor of

Eq. (1), allowing us to go beyond scaling analysis. In
order to test this prediction, we plot F=F� as a function of κ
in Fig. 4, for all the experiments performed in this study.
First, all the experimental data collapses on a single
nonmonotonic master curve, confirming further the
results of Fig. 3. Second, Eq. (2) is found to be in excellent
agreement with the low-κ part of the data, with no
adjustable parameter. Finally, the behavior at large κ reveals
the possible existence of a power law: F=F� ∼ κ−1=4,
equivalent to F ∼ η3=4V3=4G1=4R5=4. This gap-independent
empirical scaling suggests that the lift force saturates
at small enough distances, in agreement with the observa-
tion made in Fig. 2. Such a result [25] might tentatively be
attributed to a competition between the increase of
the elastohydrodynamic symmetry breaking and the
decrease of the pressure magnitude due to the substrate’s
deformation, but further work is needed to quantify
this hypothetical mechanism, and to disentangle it
from potential nonstationary effects [8]. Indeed, the latter

are a priori not negligible anymore at large κ (see
Supplemental Material [39]).
In conclusion, our results robustly demonstrate the

existence and the first direct measurement of the elastohy-
drodynamic lift force at the nanoscale, and confirm our
novel quantitative asymptotic theoretical prediction.
Moreover, the latter having been developed in the frame-
work of classical soft lubrication theory, the collapse of the
data with it for various amplitudes, frequencies, viscosities,
and shear moduli, allows us to safely exclude artifacts from
viscoelasticity, poroelasticity, or nonlinear elasticity. For
large compliances, or equivalently at small confinement
length scales, a saturation of the lift force is observed and
an empirical scaling law is discussed. In the future,
focusing the efforts on the resolution of the nonlinear
problem at any dimensionless compliance, and including
nonstationary terms associated with the driving oscillation,
might help to explore further the saturation regime. We
anticipate important implications of the existence of the
elastohydrodynamic lift force at the nanoscale for nano-
science and biology.
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