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Abstract. - The behaviour of a charged particle travelling above the surface of a dielectric fluid 
at  constant velocity V is considered. The fluid is taken to be incompressible, inviscid and 
infiiitely deep, and the particle velocity is assumed to be smaller than the minimum phase speed 
of capillary gravity waves, cmh.  Because of the electrostatic coupling between the charged 
particle and the fluid, the particle should induce a bump on the surface. We find that the bump 
volume SZ is independent of the velocity V of the particle. For V<< cmin, the fluid momentum Q 
varies linearly with the particle velocity. For larger values of V, however, Q deviates from 
linearity and diverges like [ 1 - (V/cmin)]-l as V approaches cmh.  From the calculation of Q, we 
derive the induced mass of the particle, which is not directly related to the bump volume. 

Introduction. - A great deal of interest in the physical properties of <<soft condensed- 
matter systems)) has arisen in recent years [ l ,  21. These systems can be defined as molecular 
systems displaying large responses to small perturbations [3]. <<Soft surfaces,> might be 
defined in an analogous way. Recently, one of us proposed a study of the liquid-vacuum 
interface of low-vapour-pressure dielectric liquids by sending a beam of charged particles 
above the interface[4]. The method is based on the electrostatic coupling between the 
charged particles and the dielectric liquid, and consists of measuring the effect of the 
interface on the particles rather than the surface deformation itself. In this letter we focus on 
a particular system: a single particle carrying a charge q is placed at  a distance d from the 
surface of an incompressible, inviscid and infinitely deep liquid, and moves at a velocity V 
parallel to the surface (l) [5]. For V smaller than the minimum phase speed of capillary 
gravity waves cmh = ( 4 g y / ~ ) ’ / ~  (where e is the liquid density, y is the liquid-air surface 
tension and g is the acceleration due to gravity) [6], the charge should induce a bump on the 
surface. We find that the bump volume is independent of V. For V<<c-, the fluid 
momentum Q varies linearly with the particle velocity. For larger values of V, however, Q 
deviates from linearity and diverges as V approaches ch. From the calculation of Q, we 
derive the effective mass of the particle. This study was done within the framework of the 
linear theory of capillary gravity waves[6]. 

(l) This problem was first considered by the authors, see in ref. [5] .  However, the calculation of the 
fluid momentum presented in there was incorrect. 
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Fig. 1. - Particle of charge q travelling above the surface of a dielectric fluid a t  constant velocity V. The 
motion of the particle takes place in the negative s-direction. 

Model. - Let us consider the following problem (see fig. 1): a particle of charge q and mass 
m is travelling at  a velocity V above a fluid surface. The fluid is taken to be incompressible, 
inviscid and infinitely deep. We take the (x, y)-plane as the equilibrium surface of the fluid 
and the x-axis as the direction perpendicular to the equilibrium surface. The particle velocity 
may be written in terms of the unit vector U, in the positive x-direction as V = - Vu,, with 
V >  0. The charged particle generates an external surface pressure distribution p ,  of the 
form peA(x, y, t )  = P(x + Vt, y), with [7] 

(1) 

Here, E ,  is the relative electric permittivity of the fluid, E~ is the electric permittivity of 
vacuum, and d is the altitude of the particle above the equilibrium surface of the fluid. The 
total force acting on the fluid surface (the <<image force.) is directed along the positive 
x-direction; its magnitude is given by 

1 q 2  E r - 1  E r d 2 + X 2 + y 2  
P(x,  y) = - - - 

4.7tEo 227 ( E ,  + 1)2 ( d 2  + X 2  + y2)3 . 

(2) 

Let us assume that the fluid motion is irrotational. Consequently, the fluid velocity can be 
expressed as U = grad ~ 1 ,  where ip is called the velocity potential. It is determined by solving 
Laplace’s equation, A 9  = 0, along with the boundary conditions 

1 E , - 1  q 2  
F = - \ \ dxdyP(x, y) = - 

4 m 0  (E, + 1)  4d2 * 

(3) 
a 
at 

%J a2v a ( 3 %  + $)= - - p e d ,  for x = O ,  -Y- - eg- + e -  ax at2 a x  ax2 

and a q / a x  for x + - cm [6,8]. Let us seek a velocity potential of the form [6] 

d x ,  y, 2, t )  = - - 4 4 ,  ky) exp [ i [ k ,  (x + Vt) + k, yl I exp [kzl ,  (4) 

where k = vm. Equation (4) satisfies both Laplace’s equation and the boundary 
condition for x + - W .  The amplitude A(k,, ky) is obtained by substituting eq. (4) into the 

\22 
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free surface boundary condition (3), and is 

[ y k ( k 2  + K') - ~ V ~ k i l A ( k , ,  k,) = - ik,VF(k,, k,), (5)  

where &c,, k,) denotes the Fourier transform of the function P(x, y) and K - ~  = (y/@g)1/2 is 
the capillary length, Note that since the pressure system P(x, y) (eq. (1)l is symmetrical 
around the origin, P(k,, k,) is a function only of k and can be written as P(k,  , k,) = G ( k ) ,  
where 

E,d2 + r2 " E r  - lmdr r J0 (k r )  ( d 2  + r2)3 * G ( k )  = - - 
4nE0 ( E ,  + 

Here, Jo denotes the Bessel function of the first kind of zeroth order[9]. 

Surjace displacement. - Let x = <(x, y, t )  denote the displacement of the free surface 
from its equilibrium position. It may be obtained by combining the kinematic relation at the 
free surface ac/at = ( a q , / a ~ ) , = ~  [8] and eq. (41, and is 

where the Fourier component t(k,, k,) satisfies 

Since, by assumption, the stream velocity Vis smaller than cmh, the bracket on the left-hand 
side of eq. (8) is positive and the bump profile is entirely determined by eq. (8). This regime 
corresponds to the absence of a wake (see Conclusion). 

dx dy c(x, y) = t (  0, 0). Using eq. (8) 
and the fact that K - ~  = (y /eg) ,  we obtain 

Consider now the volume SZ of the bump (2): 52 = 

exactly as if the fluid were at rest. It is remarkable that SZ is independent of the velocity V of 
the particle. Note that even for d rather large ( d  = K - ~ ) ,  SZ can be quite important. For 
example, for a particle carrying the elementary charge e ,  the bump volume is of the order of 
( e 2  / 4 n ~ ~ )  y -'-that is, SZ c: 6.  lo3 Hi3 (3). 

(2) Since the motion of the pressure distribution is steady, we can consider the physical properties of 
the system at any time including, in particular, t = 0. In order to simplify the notations, we shall simply 
write <(x, y) instead of c(x, y,  t = 0). 

= lo3 kgm-3; the capillary 
length is then given by K-' = Z.10-3 m. 

(3) We assume the fluid to be characterized by y - 40. Nm-' and 
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Fig. 2. - Q* = (QVK~Q~/~~)-'Q as a function of V/cmin for E ,  = 2 and d = K-', with Q the fluid 
momentum. 

Fluid momentum and effective mass of the particle. - Consider now the momentum of the 
fluid along the direction of motion (i.e. along the negative x-direction): 

& =  - dx dy dxev,. 
- - c E  - - 3 3  - - m  

Since U, = &p/ax, the x-component of the fluid velocity can be written as (cf. eq. (4)) 

where Gz(k,, k,) = - V ( k z / k )  z(k,, k,). Substituting (11) into eq. (10) and integrating with 
respect to x ,  we obtain 

We now expand exp[kg(x, y)] in powers of k g ( x ,  y). It is important to realize that the 
zeroth-order term does not contribute to Q. This point might be checked by using periodic 
boundary conditions along the x-coordinate and by noticing that no velocity field is associated 
with the k = 0 mode (G,(k = 0) = 0). Going to the next order, we find 

Inserting eq. (8) into (13), and using eq. (9), we obtain 

Equation (14) is our central result: it describes the variations of the fluid momentum Q with 
the particle velocity V. For V<<cmh, the fluid momentum varies linearly with the particle 
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velocity and is given by QVK~SZ~ times a function of Kd and E , :  Q(V<<cmin) = 
= @ V K ~ Q ~ ~ ( K ~ ;  E , )  (4). For larger values of V, however, Q deviates from linearity and 
diverges like [ 1 - (V/c"")]-' as V approaches cm*. This effect is illustrated in fig. 2 ,  where 
the dependence of ( Q V K ~ Q ~ / ~ ~ ) - ' Q  on the dimensionless velocity V/cmh has been sketched 
for & , = 2  and d = K - ' ,  

Suppose now that the particle is accelerated by some external force f (along the negative 
x-direction) (5 ) .  In this process, the liquid momentum will also be increased. Hence, the force 
fmust be equal to the time derivative of the total momentum of the system which is the sum 
of the momentum mV of the particle and the momentum Q of the 1iquid:f = m dV/dt + dQ/dt. 
This equation can be rewritten as 

(15) 

where Q'(V) denotes the derivative of Q (eq. (14)) with respect to V. The coefficient of dV/dt 
is called the eflective mass of the particle. It consists of the actual mass of the particle m and 
the induced mass, which, according to eq. (14), is 

f= [m + &'(VI dV/dt, 

@ K 3  Q2 
Q'(V)= ___ [ I ,  16 

where 

For V<<cmin, the induced mass is constant: Q'(V<<c"") = Q K ~ Q ' ~ ( K ~ ;  E , ) ( %  Contrary to 
what was expected in ref. [5], Q'(V<< cmh) is not simply proportional to the bump volume 
(Q'(V<< cmin) f eQ). For larger values of V, Q'(V) becomes velocity dependent and diverges 
like [ 1 - (V/C"")]-~ as Vapproaches cmh. Note that for an electron (charge e ,  mass me), the 
low velocity limit of the induced mass is of the order of 10-llm, (see footnote(6)). 

Conclusion. - In this letter, we considered (within the framework of the linear theory of 
capillary gravity waves) the behaviour of a charged particle travelling above the surface of a 
dielectric fluid at  constant velocity V. We showed, in particular, that the fluid momentum Q 
varies linearly with the particle velocity for small V, while it deviates from linearity for 
larger values of V and diverges as V approaches c-, This divergence is somewhat similar to 
the behaviour of the momentum of a relativistic particle as its velocity approaches the speed 
of light [lo]. 

All of our discussion was restricted to velocities V smaller than the minimum phase speed 
of capillary gravity waves, cm'. For a fluid with y = 40 mNm-' and e = lo3 kgm-3, cmh is 
rather small: cmin = 0.20 m s-l. In the opposite case V > cmin, a complicated wave pattern is 
generated at the free surface of the fluid. The waves generated by the moving particle 
continually remove energy to infinity, and the particle consequently experiences a drag 
called the wave resistance [U]. The analysis of this wave resistance will be published 

(4) In the limit of physical interest ( ~ d < <  l), the function f reduces to a constant: f ( K d ;  E , )  = 

( 5 )  The following analysis is reminiscent of the development given in Landau and Lifshitz concerning 

(6) In the limit ~ d < <  1, Q'(V<<c"") is given by Q'(V<<cmin) = g ~ ~ Q ~ / 1 6 .  

= 1/16. 

the drag force in potential flow past a body, see ref. [8], 0 11. 
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separately [121. The discussion was also restricted to an inviscid fluid of infinite depth. While 
the effect of a finite depth can be incorporated without much difficulty into our model (9, the 
case of a viscous fluid is more complex and will require a separate study. 

On the whole, our general conclusion is that the passing of charged objects above a 
dielectric fluid might provide a useful tool of investigation by measuring the effect of the 
interface on the particles rather than the surface deformation itself. The object may be an 
electron, a charged extremity (analogous to the tip of an atomic-force microscope), or a beam 
of charged particles. 

* * *  
We thank S. ALEXANDER, M. AUBOUY, B. BERGE and C. GAY for very stimulating discus- 

sions. Valuable comments on the manuscript by J. FOLKERS are gratefully acknowledged. 

(7 In particular, for a fluid of depth h, the bump volume is given by SZ = F/e (g  - / h ) .  Note that 
SZ is now velocity dependent. 
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