NOTES
Equilibrium of a Spherical Particle at a Curved Liquid/Liquid Interface

We consider the equilibrium position of a solid spherical particle at a curved liquid/liquid interface.
Our analysis is based on the total free energy of the system. It is shown in particular that (i) the contact
angle at the three-phase line obeys the Young equation, and (ii) the particle is never ejected out of the
droplet, whatever the curvature of the interface. We then study the equilibrium position of a “Janus
bead,” that is, a spherical particle with hemispheres of different surface energy. © 1990 Academic Press, Inc.

The equilibrium position of solid particles at fluid / fluid
interfaces is of considerable relevance in a wide range of
technological processes: flotation of ores, stabilization of
emulsions, etc. As a result, much work has been devoted
to the study of solid-liquid-liquid systems (1-5).

In the gravity-free situation, a spherical particle 1 will
be located at a planar liquid 2/liquid 3 interface if (1)

‘M <1, [

Y23

where 7,3, v13, and 7,3 are the interfacial tensions char-
acterizing the system. If the above inequality is not fulfilled,
the particle remains entirely in one of the two liquids.
Condition [1] simply expresses the existence of the angle
0, defined by the well-known Young equation

_ Y3 T Y12
cosf = ———.
Y23

[2]

In this note we analyze how criterion [1] might be mod-
ified when the interface is no longer planar but curved.
More precisely, we consider the equilibrium position of a
spherical particle 1 at the interface between a droplet 2
and a continuous phase 3 (6). We investigate in particular
the possibility of the solid particle being ejected out of the
droplet.

The physical situation is represented in Fig. la and is
fully determined by the radius of the drop R and the angles
B and B’ which locate the three-phase line. The interfacial
tensions are supposed to verify condition [1].

A purely geometric relation between R, 3, and g’ is

(31

Rsin B = rysin 3/,

where r, is the radius of the solid particle.
A second relation is obtained from the volume conser-
vation of the liquid 2:

_4R3 + r3(2 — 3 cos B’ + cos’ B')

R3
2+ 3cos B —cos’pB

[4]

(R, being the radius of the liquid droplet 2 when the particle
remains entirely in liquid 3).

Combining Egs. [3] and [4], we get a relation between
the angles 8 and 8"
e3sin’ g’
4+ €3(2 — 3 cos B’ + cos® ')

sin® 8
=t 5]
2+ 3cosB—cos’pB
where € = ry/Ry.
The total free energy E of the system is
E = 2xrdy;5(1 + cos B') + 2xrdy2(1 — cos ')
+ 27R%y,3(1 + cos B). [6]

By introducing the angle 6 (Eq. [2]) and using Egs. [3]
and [6], we are led to

E _ (‘le + Y13
Y23

5 + cos 6 cos B’
27r§y23

sin? B’

1 —cosfB’

[71
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FIG. 1. (a) A solid particle 1 of radius 7, is trapped at
the interface of aiquid droplet 2 and a continuous liquid
phase 3. (b) Same situation for a Janus bead. Each hemi-
sphere of the bead is characterized by a surface energy
defining two Young contact angles (see text).
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FIG. 2. Plot of ¢* = (Ro/1,)? versus 8., the equilibrium
value of §'.

Note that since 3 is related to 8 by Eq. [ 5], the free energy
[7] depends only on the single variable 3'. Differentiating
Eq. [7] with respect to B’ (ro and R, being fixed) yields

| dE_
Ierivm EE = —sin B'(1 — cos B8)
X (cos 8 + cos(B8 + 8)). [8]

At equilibrium, the free energy [7] must be minimal;
thus

Bet+Be=m—0, 9]

where the subscript e stands for equilibrium. We thus check
that the contact angle = — 8. — (. between the tangents
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of surfaces 12 and 23 at the three-phase line obeys the
Young equation [2], as expected.
Replacing 8. by # — 6 — B, in Eq. [5], one obtains

5 4sin’(0 + B.)
(2 — 3 cos(6 + B.) + cos?(0 + B.))sin> B4
— (2 — 3 cos B, + cos® B.)sin*(8 + B.)

[10]

Figure 2 represents the variation of 87, with > for each e,
there exists a value 3; which minimizes the free energy.

We therefore conclude that if the interfacial tensions
satisfy condition [1], the particle remains located at the
liquid/liquid interface, whatever the radius of curvature
of the droplet.

We now consider the case of a “Janus bead,” that is, a
solid spherical particle with two different hemispheres (see
Fig. 1b). Such beads have been successfully prepared by
Casagrande and co-workers and are currently under study
(7). The A hemisphere (resp. the B hemisphere) is char-
acterized by a Young angle 0, (resp. 6p) (cos s = (a3
— Ya2)/7Y23 and cos O = (Y3 — YB2)/v23). We set Op < O4.

The free energy of the system is now given by

€

sin? g’
1—cospB’

E _yutoym
27r %723 Y23
with 6; = 0 for 8’ < /2 and 6; = 6, for B’ > «/2.
Using the previous results relative to a homogeneous
bead, we obtain the equilibrium position that minimizes
the free energy [11].
Two regimes of interest may be distinguished:

+ cos 6; cos B’ + [11]

(a) g < w/2 < 0. The variation of the angle B; with
the ratio € = ro/ Ry is shown in Fig. 3a (solid line). The
dashed lines represent the variation of 3. for homogeneous
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FIG. 3. Plot of €3 = (Ry/1,)* versus (% for a Janus bead (solid lines). The dashed lines are from homogeneous

beads. (a) g < 7/2 < 0x;(b) g < Os < 7/2.
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A and B beads. For € > g, 8. is given by the B branch,
while for ¢ < eg, the three-phase line is pinned at the
boundary between the two hemispheres (8, = 7/2).

(b) 65 < 05 < m/2. The variations of 8. with ¢ are
represented in Fig. 3b. 3. is given by the B branch for ¢
> eg and by the A branch for e < e4. For ¢4 < ¢ < 3, 8.
is locked to x/2. Physically, if we increase the droplet
radius Ry, the three-phase line first creeps on the B hemi-
sphere up to a critical value eg. The line is thereafter pinned
at the boundary between the two hemispheres (8, = =/
2) up to the critical value €,. For € < ¢4, the line creeps
on the A hemisphere, up to the final value 8, = 7= — 0,
obtained for e = 0.

We have thus shown analytically that in both cases (a)
and (b) the pinning situation is achieved for v/2 — 6, < 8.
< /2 — fp. Note that in this pinning regime, the Young
equation cannot be used since the contact line is then a
four-phase line. Our results could be of interest for the
study of other heterogeneous surfaces.
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