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From adhesion to wetting of a soft particle

Thomas Salez, Michael Benzaquen and Élie Raphaël

Using a thermodynamical approach, we calculate the deformation of a spherical elastic particle placed on a

rigid substrate, under zero external load, and including an ingredient of importance in soft matter: the

interfacial tension of the cap. In a first part, we limit the study to small deformation. In contrast with

previous studies, we obtain an expression for the energy that precisely contains the JKR and Young–Dupré

asymptotic regimes, and which establishes a continuous bridge between them. In the second part, we

consider the large deformation case, which is relevant for future comparison with numerical simulations

and experiments on very soft materials. Using a fruitful analogy with fracture mechanics, we derive the

exact energy of the problem and thus obtain the equilibrium state for any given choice of physical parameters.
Introduction

Since the seminal studies of Hertz,1,2 Johnson, Kendall and
Roberts (JKR),3 and Derjaguin, Muller and Toporov (DMT),4 the
contact of adhesive elastic solids has been widely studied.5–7 This
area of research is of tremendous importance: the range of
application now spreads from biology to engineering, as shown
by the recent developments on latex particles,8 biological cells,9,10

or micro-patterned substrates11 for instance. Extensions of the
JKR theory to large deformation have been obtained, and the
JKR–DMT transition has been claried: see for instance Maugis'
book6 for an interesting historical review on the topic. In the
Boussinesq problemof an innite elastic half-space indented by a
rigid sphere, exact theories have been proposed12 using Sneddon
theorems.13 The dual problem of an elastic sphere on a rigid
substrate has been studied as well in symmetric compression.14

In a similar way, wetting properties have been the subject of
abundant literature.15–17 Wetting on elastic substrates has been
intensely studied18–21 and electrowetting22,23 now allows precise
control of the wetting properties of a so material.

In the present article, we thermodynamically calculate the
shape of a spherical elastic particle on a single rigid substrate (see
Fig. 1), under zero external load, and we include an ingredient of
importance in so matter:8,24,25 the interfacial tension of the cap,
that was neglected in the JKR theory although capillary adhesion
was taken into account. This supplementary ingredient allows one
to draw a bridge between adhesion and wetting for any so object.
In a rst part, we limit the study to small deformation. In previous
static8,24 and dynamic25 studies, the choice was made on obtaining
proper scalings rather than the two exact asymptotic behaviours,
namely the Young–Dupré and JKR theories. This choice was valid
in view of the spherical shape assumption, which is only approx-
imate near the edges of contact.6 However, these attempts remain
UMR CNRS Gulliver 7083, ESPCI, Paris,
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at the level of scaling and thus do not allow for quantitative
description of experiments and numerical simulations. Here, in
contrast, we build up an expression for the energy at small
deformation which precisely contains the JKR and Young–Dupré
asymptotic regimes, thus establishing a continuous crossover
between them. We stress that the main hypothesis underlying this
new analysis is that the spherical shape is a good approximation
when it comes to calculating the capillary energetic contribution of
the external cap, but not for the elastic contribution itself for which
we keep the exact JKR expression. In a second part, we consider the
large deformation case. Using a fruitful analogy with fracture
mechanics, as developed by Maugis for the dual Boussinesq
problem,12 we obtain for the rst time the exact energy and the
equilibrium shape for any given choice of physical parameters.

We consider a so spherical elastic particle of initial radius
R0 that is deposited onto a rigid substrate (see Fig. 1). Adhesion
forces tend to increase the particle–substrate contact area, while
the particle–vapour surface tension and bulk elasticity limit
Fig. 1 Schematic of a soft spherical particle of initial radius R0 (dashed line) deposited
onto a rigid substrate. After capillary spreading, the deformed state is characterized by
the radius R1 of the external spherical cap. Note that this simple picture does not
account for the actual deformation of the particle at the edges of the contact zone.6
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this process. In order to estimate the contribution of the
particle–vapour surface tension, we assume that the equilib-
rium shape can be described as a spherical cap with radius R1.
Incompressibility imposes

R1 ¼ 4R0
3

3h2
þ h

3
: (1)

In addition, due to spherical geometry, the contact radius a
is given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1h� h2

p
: (2)

Finally, we introduce the deformation depth Dh:

Dh ¼ 2R0 � h, (3)

as a unique variable.

1 Model at small deformation

In this rst part, we present the Tenso-Elastic-Adhesive (TEA)
model at small deformation: Dh � R0. Then, we obtain the
analytical solution and compare it to the JKR and Young–Dupré
asymptotic regimes. Finally, we retrieve the results thanks to a
fruitful analogy with fracture mechanics12 and compare them to
previous expressions.8,24

Going beyond the JKR theory, we wish to include the
contribution of the surface tension of the external spherical cap.
Therefore, we calculate the total TEA energy under zero external
load:

UTEA ¼ Uad + Uel + Us, (4)

where Uad, Us, and Uel are the adhesive, tensile and elastic
energetic contributions at small deformation, respectively.
According to the JKR theory,3 the elastic energy at small defor-
mation, and under zero external load, equals

Uel ¼ 1

15
KR0

�2a5; (5)

with the rigidity†

K ¼ 4

3

E

1� n2
; (6)

where E is the Young's modulus, and n the Poisson ratio. Eqn (5)
corresponds to a restoring energy that causes a resistance to the
deformation. Using eqn (1)–(3), and developing eqn (5) at the
lowest order in Dh/R0, leads to‡

Uelz
4
ffiffiffi
2

p

15
KR0

1=2Dh5=2: (7)
† In previous studies,8,24 the rigidity was dened as K ¼ E
1� n2

¼ 2G
1� n

.

‡ There is a 16/21 factor in comparison with the developed elastic energy in
previous studies.8,24 It is due to the use of the spherical connection Dh(a),
obtained from eqn (1)–(3) in the elastic energy from the dual Boussinesq
problem, instead of the real Boussinesq connection,6 and to a different but
self-consistent denition of the rigidity K (see the previous footnote).
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The adhesive energy is given by

Uad ¼ �pWa2, (8)

whereW is the thermodynamical work of adhesion between the
spherical particle (P) and the solid substrate (S), in the ambient
vapor (V):

W ¼ g + gSV � gPS, (9)

with the notation g ¼ gPV. Note that it is straightforward in the
spherical case to recover eqn (8) – that depends only on the area
of contact – by integrating all the volumic van der Waals
interactions between the two considered bodies.26 Eqn (8)
expresses the fact that a positive adhesive work tends to deform
the particle, by spreading. Using eqn (1)–(3) and (8) and
removing the additional constant term gives

Uad z �2pWR0Dh, (10)

at the lowest order in Dh/R0. As in the case of elasticity (see eqn
(5)), surface tension acts as the restoring energy:

Us ¼ pg(a2 + 2R1h) (11a)

Us ¼ 2pg

�
a2 þ h2

2

�
; (11b)

according to eqn (2), where we recognize the total surface of a
spherical cap (see Fig. 1). Note that we do not count twice the
particle–substrate interaction since, according to eqn (8), (9)
and (11a) we have

Uad + Us ¼ pa2(gPS � gSV) + 2pgR1h, (12)

where the rst term is the energetic cost of replacing the solid–
vapor interface by the particle–substrate interface, through
capillary adhesion, and the second term is the surface energy of
the external spherical cap. Using eqn (1)–(3), and developing
eqn (11a) at the lowest order in Dh/R0, leads to

Us z pgDh2 (13)

As introduced in eqn (4), the TEA energy is the sum of eqn
(7), (10) and (13):

UTEAz� 2pWR0Dhþ pgDh2 þ 4
ffiffiffi
2

p

15
KR0

1=2Dh5=2; (14)

at the lowest order in Dh/R0. Then, let us introduce the
dimensionless quantities:

X ¼ g

W
(15a)

Y ¼ Dh

2R0

(15b)

Z ¼ KR0

4W
(15c)

~UTEA ¼ UTEA

2pWR0
2
: (15d)
This journal is ª The Royal Society of Chemistry 2013
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Finally, dividing eqn (14) by 2pWR0
2, one gets the dimen-

sionless expression of the total energy:

~UTEAz�2Y þ 2XY 2 þ 64

15p
ZY 5=2; (16)

at the lowest order in Y that contains all the ingredients of the
model (through X and Z).

The Young–Dupré regime corresponds to a non-elastic
particle. Therefore, in order to study this limit, we set Z ¼ 0 in
eqn (16) according to eqn (15c). At constant temperature and
volume, the thermodynamical equilibrium is reached when
~UTEA is minimal with respect to Y. Then, minimizing eqn (16)
with respect to Y leads to the solution

Y*
YD ¼ 1

2X
: (17)

Note that the necessary condition Y*
YD < 1 is ensured, since

one has X > 1/2 in partial wetting. Using eqn (9), (15a) and (15b),
one then obtains

Dh*YD

R0

¼ 1þ gSV � gPS

g
: (18)

The cosine of the equilibrium contact angle q* at small
deformation is thus given by

cos q*z
Dh*YD

R0

� 1 (19a)

cos q* ¼ gSV � gPS

g
; (19b)

which corresponds to the Young–Dupré law.16

As already mentioned in the introduction of this article,
the JKR theory neglects the interfacial tension g of the
particle in the considered atmosphere. Therefore, in order to
study this limit, we set X ¼ 0 in eqn (16) according to
eqn (15a). Minimizing eqn (16) with respect to Y leads to the
solution

Y*
JKR ¼

�
3p

16Z

�2=3

: (20)

Note that the necessary condition Y*
JKR < 1 is ensured as soon

as Z > 3p/16. Finally, using eqn (1)–(3), (15b), (15c) and (20) one
nds the JKR contact radius:

aJKR ¼
�
6pWR0

2

K

�1=3

; (21)

which is precisely§ the JKR contact radius under zero external
load.3

Let us now consider the general case with nite X and Z. The
thermodynamical equilibrium is reached when ~UTEA is minimal
§ Removing the surface tension term in the developed total energy in previous
work,24 and looking for equilibrium, does not give back the exact JKR radius of
eqn (21) due to the 16/21 factor in the elastic term (see the previous footnote).
This is fully understood since the JKR theory is incompatible with an imposed
spherical shape, thus this previous study24 was limited to scaling only by
construction.
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with respect to Y, which corresponds to a cubic equation. Its
positive real solution Y* is given by

Y*

Y*
YD

¼ b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q3

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q3

p
3

q
� b

3

�2
; (22a)

where for clarity we have introduced the auxiliary variables:

b ¼ Y*
JKR

Y*
YD

¼
�
9p2

32

�1=3
X

Z
2=3

(23a)

q ¼ �
�
b

3

�2

(23b)

r ¼ 1

2
�
�
b

3

�3

: (23c)

From eqn (22a), one can plot the normalised solution as a
function of the unique variable bf XZ�2/3, as shown in Fig. 2. The
TEA solution always leads to a smaller deformation than the
single JKR or Young–Dupré one due to the additional restoring
energy. Moreover, we observe a smooth transition between the
JKR and Young–Dupré asymptotic regimes, the governing model
being the one leading to the smaller deformation. This funda-
mental crossover should be experimentally observable when Y*YD
z Y*JKR that is for g

3 zWK2R0
2, within a one order of magnitude

typical range, as long as the deformation remains small for the
previous calculation to be valid. Note that if Dh� R0 is no longer
satised, one will need a large deformation model.

To conclude this part on small deformation, we recall the
analogy with fracture mechanics that was originally developed by
Maugis for the dual Boussinesq problem.12 Then, we show that it
gives back the correct elastic energy for our system at small
deformation, and we explain the difference with the elastic
energy obtained in previous studies.8,24 In the Boussinesq
canonical example, a Hookean elastic innite half-space is
indented by a rigid sphere in the presence of capillary adhesion
and without surface tension of the external cap. In the eld of
fracturemechanics, it is well known that the elastic energy is fully
Fig. 2 Normalized solution of the TEAmodel to the Young–Dupré one, from eqn
(22a). For comparison, we plotted the Young–Dupré (Z ¼ 0) and JKR (X ¼ 0)
regimes at small deformation, according to eqn (17) and (20). The definitions of
the dimensionless variables X, Y and Z are given in eqn (15a), (15b) and (15c).

Soft Matter, 2013, 9, 10699–10704 | 10701



Soft Matter Paper
released during the fracture process. Therefore, by analogy, the
equilibrium between adhesion and elasticity is reached when the
work of adhesion W balances the fracture energy release rate G:

W ¼ G (24a)

W ¼ a3K

6pR0
2
; (24b)

where we wrote the expression of G at small deformation and
under zero external load.12 As one can immediately see, this
gives back the JKR contact radius of eqn (21), which validates
the analogy with fracture mechanics. Furthermore, eqn (24b) is
similar to a force balance. Let us integrate the two sides over the
contact area, in order to obtain the elastico-adhesive energy.
The adhesive term in eqn (24b) gives, with appropriate sign

Uad ¼ �
ð
Scontact

dSW ; (25)

where we retrieve precisely eqn (8). The elastic term in eqn (24b)
gives, with appropriate sign

Uel ¼
ð
Scontact

dSG; (26)

where we retrieve precisely eqn (5), and thus eqn (7) at small
deformation.

For comparison, the elastic energy can also be evaluated
using the fundamental Hookean energy:27

Uel ¼ 1

2

ð
V

dVsij3ij (27a)

Uel ¼ 1

2

þ
S

dSsijuinj; (27b)

where V and S are the volume and surface before deformation,
sij and 3ij ¼ (viuj + vjui)/2 are the components of the stress and
strain symmetric tensors, and ui is the local deformation along
i. To obtain eqn (27b), we used the internal equilibrium vjsij¼ 0,
and the Green–Ostrogradski theorem. In previous studies,8,24

only the vertical stress and strain from the Boussinesq
problem12 are considered at the contact, thus

Uel ¼ 1

2

ð
Scontact

dSszzuz; (28)

where the integral is evaluated over the coordinates of the system
before deformation. Eqn (28) should be identical to eqn (26), since
G, uz and szz, all come from the same analysis.12 However, in the
Boussinesq problem, the correct total deformation d(a) satises6

d ¼ a2

3R0

; (29)

which means that d s Dh. Actually, using eqn (1)–(3) at small
deformation, one obtains

Dhz
a2

2R0

: (30)

In previous studies,8,24 d was directly replaced by the spher-
ical connection Dh(a) from eqn (30) in the expressions of uz and
10702 | Soft Matter, 2013, 9, 10699–10704
szz, thus leading to a wrong JKR contact radius. When consid-
ering instead eqn (29) for the expressions of uz and szz given by
Maugis,12 we get from eqn (28)

Uel ¼ 3

4
K

�
ad2 � 2

3

a3d

R0

þ 1

5

a5

R0
2

�
; (31)

which is equal to eqn (5), and thus to eqn (7) at small defor-
mation. This expression gives back the correct JKR radius of
eqn (21) when minimizing the elastico-adhesive energy. An
equivalent way to understand this difference is to notice that
there are two ways of making the analogy with the Boussinesq
problem. On one hand, it has been considered8,24 that d ¼ Dh
and a are dependent variables from the beginning, i.e. in eqn
(31), through the spherical connection of eqn (30). Therefore,
the exact JKR result of eqn (21) cannot be obtained but the
scaling is correct. On the other hand, the present TEA model
starts from two independent variables, d and a, in the Bous-
sinesq energy of eqn (31). The connection of eqn (29) is then
obtained by minimizing eqn (31) with respect to d at constant
a, and introduced back in eqn (31) thus leading to eqn (5).
Therefore, the TEA model starts with an elastic energy that
depends only on a. This ad hoc approximation has a great
advantage of containing the exact JKR contact radius of eqn
(21), and thus allows for a quantitative comparison with
experiments, even though we approximate the shape by a
purely spherical cap. The main argument in favour of the new
approach presented here is that a spherical cap gives a good
estimate of the tensile energy of the external cap, and thus
allows for the Young–Dupré limit to be reached, and at the
same time the JKR elasticity gives the proper elastic contribu-
tion, and thus allows for the JKR limit to be reached (see
Fig. 2).
2 Model at large deformation

To understand experiments or numerical simulations that
reach large deformation, one cannot use the small deforma-
tion energy of eqn (16). Therefore, one needs a theory at
large deformation. In this second part, we thus extend the
previous analogy with fracture mechanics to large deformation
by using the exact energy release rate obtained by Maugis for
the dual Boussinesq problem.12 Note that large deformation
means that we do not restrict ourselves anymore to an
approximate parabolic shape around the contact zone, but we
use the exact spherical geometry. However, we deliberately
remain in the domain of validity of Hookean linear elasticity.

Let us recall the exact energy release rate under zero external
load from the Boussinesq problem:12

G ¼ 3K

8pa

�
R0

2
� R0

2 þ a2

4a
ln

�
R0 þ a

R0 � a

��2
: (32)

Then, using eqn (26), one obtains

Uel ¼ 3

4
KR0

3

ða=R0

0

dx
1

2
� 1þ x2

4x
ln

�
1þ x

1� x

�� �2
: (33)
This journal is ª The Royal Society of Chemistry 2013
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Finally, according to eqn (4), the total energy is thus given by
the sum of eqn (8), (11a) and (33):

UTEA ¼ �pWa2 þ 2pg a2 þ h2

2

� �

þ 3

4
KR0

3

ða=R0

0

dx
1

2
� 1þ x2

4x
ln

�
1þ x

1� x

�� �2
; (34a)

where h(a) results from the combination of eqn (1) and (2).
Dividing eqn (34a) by 2pWR0

2, as in eqn (15d), allows us to get
the dimensionless expression of the total energy:

~UTEA ¼ � ~a2

2
þ X ~a2 þ

~h
2

2

 !

þ 3Z

2p

ð~a
0

dx

�
1

2
� 1þ x2

4x
ln

�
1þ x

1� x

��2
; (35a)

where we have introduced the dimensionless quantities:

~h ¼ h

R0

(36a)

~a ¼ a

R0

; (36b)

according to eqn (1)–(3).
First, in the limit of no elasticity, one sets Z ¼ 0 in eqn (35a)

and the equilibrium depends only on X. Minimizing eqn (35a)
with respect to Y leads to the exact solution

Y*
YD ¼ 1�

X � 1

2
X þ 1

0
B@

1
CA

1=3

: (37)

According to eqn (15a), X is given by

X ¼ 1

2þ S=g
; (38)
Fig. 3 Projections of the numerical solution Y*(X, Z) of the TEA model at large defo
0), according to eqn (37), and the small deformation JKR regime (X ¼ 0) according to
Young–Dupré model at the transition to total wetting (X ¼ 0.5). The definitions of
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where we introduced the spreading parameter (see eqn (9)):

S ¼ W � 2g (39a)

S ¼ gSV � gPS � g. (39b)

We can immediately check that our problem of balance
between adhesion and surface tension is dened only if X > 1/2,
that is for partial wetting: S < 0. Otherwise, when X / 1/2
(or S/ 0), one has Y*/ Y*(1/2)¼ 1, that is total wetting. Let us
now introduce the contact angle q. Using spherical geometry
(see Fig. 1), we have the relationship

cosq ¼ 1� h

R1

; (40)

which can be rewritten using eqn (1) and (36a), as follows:

cosq ¼ 4� 2~h
3

4þ ~h
3
: (41)

Then, changing variables through eqn (3) and (15b) leads to

cos q ¼ 1� 4ð1� YÞ3
1þ 2ð1� YÞ3 : (42)

One can incorporate the solution given in eqn (37) in eqn
(42) and obtain the solution q* through

cos q* ¼ 1� X

X
: (43)

Finally, according to eqn (38), we nd

cos q* ¼ 1þ S

g
; (44)

which is identical to eqn (19b) and thus to the Young–Dupré
law.16

Let us now study the general case. According to eqn (1)–(3),
(35a), (36a) and (36b), the dimensionless energy ~UTEA(X, Y, Z) is
now a function of one variable Y that describes the deformation,
rmation, from eqn (45). For comparison, we plotted the Young–Dupré regime (Z ¼
eqn (20) with restriction to the Y* < 1 domain. Note the singular behaviour of the
the dimensionless variables X, Y and Z are given in eqn (15a), (15b) and (15c).

Soft Matter, 2013, 9, 10699–10704 | 10703
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and two physical parameters: X that quanties capillarity over
adhesion, and Z that quanties elasticity over adhesion. For the
given parameters X and Z, equilibrium is reached for a
minimum of ~UTEA with respect to Y. Thus, the solution Y*
satises

v ~UTEA

vY

����
Y¼Y*

¼ 0: (45)

In contrast to the small deformation problem, where the
solution could be expressed as a function of a unique variable,
here the solution Y*(X, Z) is a 2D surface. This double depen-
dence on X and Z at large deformation could be an explanation
of the spreading of the numerical simulation data in previous
work.24 We solved eqn (45) numerically for several couples of
parameters X and Z. Projections are shown in Fig. 3. As expec-
ted, at small Z or large X one recovers the Young–Dupré regime,
and at small X or large Z (and thus small deformation Y*) one
recovers the JKR regime. The results are also in good agreement
with numerical simulations24 at a small adhesion parameter.
3 Conclusion

We reported on a complete model for Tenso-Elastic-Adhesive
(TEA) spheres placed on a rigid substrate, for both small and
large deformation cases. Interestingly, the small deformation
case offers an exact analytical solution that connects the JKR
and Young–Dupré asymptotic regimes through a single
parameter dependence. We thus predicted a condition to
observe this crossover experimentally: g3 z WK2R0

2. Moreover,
using an analogy with fracture mechanics that was originally
proposed by Maugis, we claried the difference with previous
models in the literature. The large deformation energy was then
obtained through this analogy with fracture mechanics, and its
minimization led to equilibrium with a double parametric
dependence. This work opens the way to quantitative experi-
ments and numerical simulations on so particles with large
deformation, where the typical elastic KR0, adhesive W and
tensile g surface energies are of the same order of magnitude.
From an experimental point of view, one may imagine using
electrowetting22,23 in order to scan the adhesive parameter
independently, and thus probe this striking crossover between
adhesion and wetting of so objects. Non-linear elastic mate-
rials may be studied as well through a neo-Hookean approach.
In the near future, this work should also be connected to the
DMT theory.4,6 Finally, viscoelastic dynamical studies may
enlarge the scope of the present static analysis to a wide range of
experimental situations.
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