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Hydroelastic wake on a thin elastic sheet floating on water
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We investigate the hydroelastic waves created by a perturbation moving at constant
speed along a thin elastic sheet floating at the surface of deep water. Using a high-resolution
cross-correlation imaging technique, we characterize the waves as a function of the
perturbation speed, for different sheet thicknesses. The general theoretical expression for
the dispersion relation of hydroelastic waves includes three components: gravity, bending,
and tension. The bending modulus and the tension in the sheet are independently measured.
The experiments represent a direct test of the theory where all components, bending,
stretching, and gravity, cannot be neglected. Excellent agreement is found between the
experimental data and the theoretical expression.
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I. INTRODUCTION

Feynman described water waves as “the worst possible example [of waves], because they are in
no respect like sound and light; they have all the complications that waves can have” [1]. Several
decades later, some questions remain unanswered and the study of water waves continues to be
an area of great interest. For example, Kelvin’s gravity wake behind a ship [2] still stimulates
fundamental questions [3,4]. Surface tension of the liquid-air interface also influences the wave
propagation, resulting in gravitocapillary waves [5–8]. Unlike the gravity wake, the capillary waves
appear ahead of the perturbation [6]. This is particularly relevant for the locomotion of insects
[9–13], as well as for nanorheological applications involving, e.g., atomic-force microscopy probes
moving along thin viscous samples [14–16].

Other waves of interest are the ones that propagate on elastic plates and membranes. Their
properties are dictated by both the bending and stretching rigidities of the material [17]. Floating
such an elastic sheet on a liquid further leads to the coupling of the elastic waves to hydrodynamics.
The resulting hydroelastic waves are of particular interest, as elastic sheets surrounded by fluids are
ubiquitous in nature. Examples can be found in fluid mechanics [18,19], geophysics [20–23], and
biophysics [24]. Hydroelastic waves are also relevant to practical applications in civil engineering
[25,26], as well as in energy harvesting through piezoelectric flags [27] and control of energy
radiation by trucks moving on ice sheets [28]. Interestingly, the propagation of such waves can
be finely controlled in an optical-like fashion by using model thin sheets with heterogeneous elastic
properties [29]. Different properties of these waves, such as the wave resistance or nonlinear effects,
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have been further studied theoretically [30,31], including the overdamped limit of lubrication
settings where viscosity dominates over fluid inertia [32–38]. The dispersion relation in the inertial
case was analytically derived and found to depend on three components: gravity, bending, and
stretching [39]. A few experimental studies developed in different contexts have studied the limiting
cases where only bending and stretching [40,41], or gravity and bending [20,21], contribute.

In this article we study the hydroelastic waves created by a perturbation moving at constant speed
relative to an elastic sheet floating on deep water. The waves are imaged using a high-resolution
optical method. By using elastic sheets with different thicknesses, the bending modulus of the
sheet is varied over more than two orders of magnitude. We find excellent agreement between
experimental data and the general theoretical dispersion relation, accounting for the three different
contributions: gravity, bending, and tension.

II. EXPERIMENTAL METHODS

A transparent annular tank (outer radius Rout = 50 cm, inner radius Rin = 30 cm) is filled with
water to a depth of about 16 cm, as shown in Fig. 1. Thin elastic sheets of Elastosil® Film
2030 (Wacker Chemie AG) with nominal thicknesses h of 50, 100, 200, 250, and 350 μm and
lateral dimensions of 20×16 cm2 are floated onto the surface of water. Thin rigid plastic supports
(18×1×0.1 cm3) are placed atop the radial edges of the elastic sheet (shown in black in Fig. 1) to
ensure that the sheets do not crumple.

We experimentally verify that adding the supports does not introduce an anisotropic tension in
the sheet, by ensuring that the deformation induced by ball bearings placed atop the sheet is axially
symmetric (see Appendix C). The tank is rotated at constant angular speed �, ranging from 0 to
2.5 rad s−1, causing the water to flow and the sheet to move. We take advantage of the opaque plastic
supports to measure the angular speed of the sheet, using an infrared beam-breaking technique.
Because of inertia, both the sheet and water do not follow the tank’s speed instantaneously. Hence,
all experiments are performed only once the speed of the sheet is constant and equal to the speed of
the tank.

A glass capillary (World Precision Instruments, USA) is pulled to a diameter of about 100 μm
at one end with a pipette puller (Narishige, Japan) and used to blow air normal to the surface of

FIG. 1. (a) Three-dimensional schematics of the experimental setup. (i) Rotating transparent annular tank
(outer radius Rout = 50 cm, inner radius Rin = 30 cm) filled with water to a depth of about 16 cm and with
an elastic sheet floating atop. (ii) Infrared beam-breaking setup to measure the angular speed � of the elastic
sheet. (iii) A pipette perturbs the surface by blowing air normal to the surface, causing waves to form. (iv) Light
sheet and dot pattern used to characterize the waves using the schlieren method [42]. (v) A camera is placed
∼2 m above the tank to image the dot pattern. (b) Top-view schematics of the experimental setup. The elastic
sheet (vi) only covers a small portion of the water surface. Plastic beams are placed along the radial edges of
the elastic sheet as shown in black.
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the sheet [Fig. 1(a iii)]. The pipette is placed in the middle of the tank, i.e., at a radius Rp = 40 cm
from the center. The air jet acts as a perturbation moving at speed v = �Rp in the reference frame
of the elastic sheet, which generates hydroelastic waves. The latter is imaged using a synthetic
schlieren method [42] involving a random dot pattern refracted by the surface topography. The
dot pattern is generated using MATLAB [42,43] and printed onto a transparency film. Light shines
through the dot pattern [Fig. 1(a iv)] and the waves, before being collected by a camera above the
tank [Fig. 1(a v)]. The schlieren method consists in measuring the apparent displacement of the dots
due to light refraction by the waves. The displacement is measured relative to a reference image of
the unperturbed surface (i.e., no air jet) moving at angular speed �, which ensures that the collected
information is only due to the waves. This measurement is performed using an open-source digital
two-dimensional (2D) image-correlation algorithm (Ncorr, MATLAB) [44]. From the displacement
of the dots, one can access the slope of the surface and thus the surface topography [42].

III. RESULTS AND DISCUSSION

A. Measurement of the wavelength

Figures 2(a) and 2(b) show a typical vectorial displacement field. The air jet creates a localized
perturbation in the sheet, as evidenced by the large magnitude of the displacement field therein.

FIG. 2. (a) Raw 2D dot-displacement data measured with Ncorr [44], for an elastic sheet of nominal
thickness h ≈ 200 μm moved at speed v = 0.9 m s−1. The displacement vectors are only shown every ten
pixels for clarity. The bottom arrow indicates the speed of the sheet with respect to the stationary air jet
whose position is indicated by the red arrow. (b) Close-up around the perturbation, corresponding to the black
square in (a). (c) The y component d of the displacement field. Warm colors (green to orange) correspond to
positive displacements, while cold colors (green to blue) correspond to negative ones. (d) Close-up around the
perturbation, corresponding to the black square in (c). All scale bars correspond to 1 cm.
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FIG. 3. The y component d of the displacement field (see Fig. 2), for speeds (a) v = 0.4, (b) v = 0.6, and
(c) v = 0.9 m s−1, on an elastic sheet of nominal thickness h ≈ 200 μm. All scale bars correspond to 1 cm. (d)
The y component d of the displacement field normal to the wave front [see the red line in (a)], as a function
of the distance �x from the perturbation, for the three speeds as indicated (shifted vertically for clarity). The
position of the air-jet perturbation is indicated by the black arrow.

Ahead of the perturbation, in the reference frame of the elastic sheet, the upstream wave pattern
of the hydroelastic wave appears clearly, with a dominant, centimetric, wavelength λ. Note that
the displacement data plotted in Fig. 2 are directly related to the slope of the interface through the
Snell-Descartes law and that the amplitude of the waves is at least an order of magnitude smaller
than the wavelength. As the hydroelastic waves propagate along the y direction, the projection
of the displacement along that direction provides the strongest signal for analysis. Figures 2(c)
and 2(d) thus focus only on the y component d of the displacement field.

To characterize experimentally the dispersion relation of the hydroelastic wave, the wavelength
λ is measured as a function of the speed v. Figures 3(a)–3(c) show the y component d of the
displacement field, for various speeds. The wave is slightly tilted and not symmetric about the
y axis, because of the centrifugal force and the surface of water assuming a parabolic profile when
rotated. This distortion is avoided in the wavelength measurement by analyzing the displacement
field normal to the wave front, as shown in Figs. 3(a) and 3(d). We observe both the wavelength
and the displacement magnitude to decrease as the speed increases. The general shape of the wave
is consistent with a sinusoid with an exponential decay envelope (see Appendix B). However, near
the source of the perturbation, where the amplitude of the wave is the largest, the shape deviates
from this description. The deviation may be ascribed to a loss of resolution for steep slopes and
nonuniform strains in the elastic sheet near the source.

B. Theoretical dispersion relation

In order to quantify further and rationalize these observations, we now introduce the relevant
theoretical framework which follows that of Schulkes et al. [39]. The mechanical system we
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consider is the thin elastic sheet in its reference frame. The out-of-plane displacement field
z = ζ (r, t ) with respect to its flat horizontal state z = 0 satisfies a simplified version of the
Föppl–von Kármán equation [17]

B∇4
r ζ − σ∇2

r ζ + ρeh∂tt ζ = P + Pext, (1)

along the 2D horizontal space coordinate r = (x, y) and for time t , where ∇r is the nabla operator
in two dimensions, ∂tt is the second partial derivative with respect to time, B is the bending stiffness
of the sheet, σ represents the tension in the sheet, and ρe is the sheet’s density. The first and second
terms respectively account for bending and tension of the sheet, while the third term accounts for the
solid inertia. The elastic sheet is further subjected to two external forces: the excess hydrodynamic
pressure P (r, t ) (with respect to the atmospheric one) exerted on the sheet by the water flow under
gravity and the driving pressure Pext(x, y − vt ) modeling the perturbation by the air jet translating
at constant speed v along y. Note that we treat the motion as rectilinear and that in particular we
neglect the inertial effects due to rotation in view of the large radius of the tank and the moderate
speed.

The water contribution P (r, t ) is calculated by assuming an incompressible and irrotational flow
of an inviscid fluid, in a semi-infinite half space located at z < ζ (r, t ). In this context, the fluid
velocity field can be written as ∇ϕ, where ϕ(r, z, t ) is a potential that vanishes in the far field and
that satisfies Laplace’s equation [45] ∇2ϕ = (∇2

r + ∂2
z )ϕ = 0. At lowest order in the flow (i.e., for

small-amplitude hydroelastic waves), the linearized Bernoulli equation for unsteady potential flows
provides the excess hydrodynamic pressure exerted on the sheet, P = −ρ∂ϕ/∂t |z=0 − ρgζ , with ρ

the liquid density and g the acceleration due to gravity.
To obtain the dispersion relation, one substitutes the expression for P into Eq. (1) in the absence

of driving (Pext = 0) and invokes the kinematic condition ∂ϕ/∂z|z=0 = ∂ζ/∂t at the water-sheet
interface. Finally, the solid inertia can be neglected for films that are thin enough in comparison to
the wavelength of the wave [39]. Considering a plane wave ϕ ∝ exp[i(ky − ωt − ikz)] satisfying
Laplace’s equation, with angular wave number k and angular frequency ω(k), yields [39]

ω =
√

Bk5

ρ
+ σk3

ρ
+ gk. (2)

We now consider the waves created by the driving perturbation Pext traveling at constant speed
v along y. In the comoving frame of the perturbation, the angular frequency ω′ of a plane-wave
component of the waves is shifted by the Doppler effect and thus reads ω′ = ω − kv. Furthermore,
since in that comoving frame the wave is stationary, ω′ = 0 is a necessary condition. Using Eq. (2),
one thus obtains the central relation connecting the angular wave number k and the perturbation
speed v, for a hydroelastic wave on deep water:

v =
√

Bk3

ρ
+ σk

ρ
+ g

k
. (3)

An extensive analysis of this relation, similar to the one performed for the gravitocapillary case
[7], reveals the main features of the present waves (see also Fig. 4). First, below a certain minimal
speed v∗ (see Appendix D) wave propagation is impossible. Second, at a given speed v > v∗ there
are two possible values for the observed wavelength. (i) The smallest value corresponds to a group
velocity that is higher than the perturbation speed v and therefore the waves propagate upstream
of the perturbation. This is the situation studied in the present work (see Figs. 2 and 3), which is
dominated by bending and tension at sufficiently large speed. (ii) The largest value corresponds
to a group velocity that is lower than the perturbation speed v and therefore the waves propagate
downstream of the perturbation. This situation corresponds to Kelvin’s classical wake [2], which is
dominated by gravity at sufficiently large speed.
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FIG. 4. Angular wave number k = 2π/λ as a function of perturbation speed v, for five different sheet
thicknesses h as indicated in the legend. Each data point was obtained using the procedure detailed in Fig. 3
and an average over four different experimental displacement profiles. The error bars correspond to the standard
deviation, which is comparable to the marker size. For each thickness h, the blue and red dashed lines
separated by a gray region indicate the upper and lower theoretical predictions obtained from Eq. (3), using the
independently measured values of B and σ (see the main text) and their uncertainties. The relative importance
of bending to stretching is quantified with the ratio B/σ and is displayed next to the corresponding curve. As
the elastic sheet gets thicker (top to bottom curves), bending becomes more significant.

C. Experimental verification of the dispersion relation

The values of the bending modulus B and the tension σ are measured independently. The bending
modulus B = Eh3/[12(1 − ν2)] depends on three parameters: (i) Young’s modulus E = 1.11 ±
0.06 MPa of Elastosil® Film 2030, measured using the stress-strain curve; (ii) the sheet thickness
h, depending on the sample and measured through optical microscopy; and (iii) Poisson’s ratio ν =
0.5, assuming that Elastosil® Film 2030 is an incompressible elastomer. The values of h (μm) and B

(N m) for our five different samples are found to be (h,B ) = {[51 ± 1, (1.6 ± 0.1) × 10−8], [104 ±
2, (1.4 ± 0.1) × 10−7], [213 ± 7, (1.2 ± 0.1) × 10−6], [258 ± 2, (2.1 ± 0.1) × 10−6], [362 ± 3,

(5.9 ± 0.3) × 10−6]}. We note that the 362-μm film was obtained by stacking two films with
nominal thicknesses of 250 and 100 μm. In addition, as the sheet is freely floating on water, the
tension in the sheet is equal to the water-air surface tension: σ = γ . The latter is measured to
be γ = 50 ± 10 mN m−1, as in [29], from two different techniques (see Appendix C): (i) using
a Wilhelmy-plate setup and (ii) characterizing the dispersion relation of gravitocapillary waves
on water. The low value of γ and the large uncertainty are attributed to the fact that the tank is
filled with an important volume of tap water and thus subject to contamination by surfactants. We
also note that recent works have shown that wrinkles can develop when a freely floating film is
indented [46,47]. In such a case, the tension in the film is no longer uniform and in particular is not
equal to the water-air surface tension. In contrast, in our work, the typical stress introduced by the
perturbation is of order ∼A2/λ2 � 1 (as estimated for a triangular indentation of sizes A and λ),
with A the amplitude of the wave, and is negligible in comparison to the water-air surface tension.

As shown in Fig. 4 (dashed lines), using the above measured values of B and σ , one can
predict the evolution of the angular wave number k as a function of the perturbation speed v. The
uncertainties in B and σ are taken into account through two limiting predictions and an interval in
between. Note that the uncertainty on σ accounts for most of the spread between the two limiting
predictions. Finally, as expected from Eq. (3), all the theoretical curves for different h (and thus B)
collapse onto Kelvin’s gravity-dominated branch [2], at both large v and small k.
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FIG. 5. Contributions of bending, tension, and gravity in Eq. (3), corresponding to different thicknesses
(and thus bending moduli B): (a) h = 50, (b) h = 100, (c) h = 200, (d) h = 250, and (e) h = 350 μm. The
blue line corresponds to bending (Bk3/ρ), the red line to tension (σk/ρ), and the green line to gravity (g/k),
while the dashed line represents the sum of the three contributions.

The wavelength λ (see Fig. 3), or equivalently the angular wave number k = 2π/λ, is measured
by fitting the experimental profile to a sinusoid with a decay envelope as a function of v (see
Appendix B for more details) or by measuring the peak-to-peak distance. The results for the five
different sheet thicknesses h are shown in Fig. 4 (data points). We find excellent agreement between
the experimental data and the theoretical prediction, which includes bending, tension, and gravity,
with no adjustable parameter. The relative contributions of the three terms in Eq. (3) are discussed
in detail in the next section. The experimental data points for the two thinnest sheets seem to be in
slightly better agreement with the upper prediction at low speed and with the lower prediction at
high speed. This observation could perhaps be related to a slight, but not quantifiable, increase in the
sheet tension due to the increase in curvature of the water-air interface. Another interesting feature
of Fig. 4 is that the difference between the upper and lower predictions decreases as the thickness
h of the sheet is increased. Indeed, the relative contribution of bending to Eq. (3) increases and the
difference between both predictions, which is mainly due to the uncertainty in tension, decreases.
Note that Kelvin’s classical gravity-dominated branch [2] corresponds to (i) a wake propagating
behind the perturbation and (ii) a wavelength that would almost reach the meter range in our
experiments, which is not attainable with the current setup.

D. Relative contributions of bending, tension, and gravity

Let us consider Eq. (3) in more detail. The first term under the square root corresponds to
the bending of the sheet, the second one to the tension in the sheet, and the third one to gravity.
Using all the measured values for B and the value of σ , the respective contributions of those three
terms, as well as their sum (dashed lines), are computed from Eq. (3) and plotted in Fig. 5. We
experimentally measure angular wave numbers ranging from 400 to 2000 m−1 (see Fig. 4). For
the thinnest film h = 50 μm [Fig. 5(a)], all three terms do contribute in that range. This highlights
the counterintuitive role of gravity in the wavelength selection of the upstream hydroelastic waves.
The elastic sheet with h = 100 μm shows an interesting behavior [Fig. 5(b)]: At low angular wave
numbers (k < 1000 m−1), all three terms are also relevant, while bending becomes predominant
at larger angular wave numbers. For the three largest thicknesses, h = 200, 250, and 350 μm
[Figs. 5(c)–5(e), respectively], bending clearly dominates.

IV. CONCLUSION

In this article we have studied the hydroelastic waves formed by moving a thin elastic sheet,
floating on water, past a stationary air jet. Specifically, we experimentally measured the wavelength

014808-7



JEAN-CHRISTOPHE ONO-DIT-BIOT et al.

of the wave as a function of the perturbation speed, for sheets with bending moduli varying over two
orders of magnitude. For thin elastic sheets (thickness smaller than 100 μm), the tension in the sheet
plays a significant role in the propagation of the waves. For thicker elastic sheets (thickness larger
than 100 μm), the bending contribution becomes dominant, a regime that is particularly relevant
for floating ice [20,21,28]. The results are found to be in excellent agreement with theoretical
predictions, based on the elasticity of slender structures coupled to the hydrodynamics of inviscid
incompressible flows, with no adjustable parameter. Interestingly, for thin elastic sheets, bending,
tension, and gravity all contribute to the hydroelastic waves, a result with practical consequences in
geophysics, biophysics, and civil engineering.
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APPENDIX A: IMAGE ANALYSIS

As described in the main text, the waves are imaged using the schlieren method [42]. Specif-
ically, the apparent displacement of the dots due to refraction at the interface is measured when
hydroelastic waves are propagating on the elastic sheet. The displacement of the dots is measured
by comparing the image of the dot pattern when waves are propagating [Figs. 6(b) and 6(f)] to
a reference [Figs. 6(a) and 6(e)]. For both images, the elastic sheet is rotating at speed � in the
tank and the measured displacement is only a result of the waves propagating at the interface.
The apparent displacement can be seen more easily when zooming closer to the perturbation
[Fig. 6(f)] where the magnitude is larger. Processing these images with the open-source digital
2D image-correlation algorithm (Ncorr, MATLAB) [44], Figs. 6(c) and 6(g) are obtained. Finally, the
strongest signal for measuring the wavelength of the waves is obtained by looking at the vertical
component of the displacement vectors [Figs. 6(d) and 6(h)].

APPENDIX B: WAVE PROFILE ANALYSIS

As explained in Sec. III A, the displacement profiles normal to the wave front can be extracted
and used to measure the wavelength of the hydroelastic waves. The displacement profiles can be
empirically described by

d = A exp(−κx) sin(kx + φ), (B1)

where κ is the inverse of the characteristic length scale of the decay, k = 2π/λ is the angular wave
number, and φ is the phase of the wave. The fit is performed one wavelength away from where the
perturbation is applied. Indeed, the imaging technique is optimized in order to measure precisely
small deformations of the surface. Near the perturbation, the magnitude of the displacement is
too large and cannot be measured precisely by the algorithm. Fitting away from the perturbation
minimizes experimental artifacts as well as possible nonlinearities near the perturbation. Figure 7
shows excellent agreement between this empirical description of the wave and the experimental
data, indicating that the wave is dominated by a single wavelength λ. The wavelength is extracted
from the fit and is consistent with a peak-to-peak measurement of the wavelength. In addition, we
have performed measurements of the wavelength near and far away from the perturbation using
the peak-to-peak method. Both measurements agree well within 5%, the difference being most
significative at lower speed (λ ∼ 1 cm). Another parameter of interest is κ , which characterizes the

014808-8



HYDROELASTIC WAKE ON A THIN ELASTIC SHEET …

FIG. 6. (a) Raw picture of the dot pattern placed underneath the tank when no perturbation is applied (no
wave propagating), called the reference image. The gray line at the top middle of the image, just extending
into the black square, is the pipette used to blow air at the surface of the elastic sheet. (b) Raw picture of the
dot pattern when a perturbation is applied and hydroelastic waves are propagating [note that shear is hard to
discern at this magnification; compare with (e) and (f)]. (c) Two-dimensional dot-displacement data obtained
with Ncorr [44] using the images shown in (a) and (b). (d) The y component of the displacement field. Warm
colors (green to orange) correspond to positive displacements, while cold colors (green to blue) correspond to
negative ones. (e)–(h) Close-up around the perturbation, corresponding to the black square in (a), for (a)–(d),
respectively. Notice that the dot pattern [see (e)] is distorted [see (f)] as the waves propagate on the elastic
sheet. This is the dot displacement quantified using Ncorr. All scale bars correspond to 1 cm.

exponential decay of the wave amplitude away from the perturbation. The profiles shown in Fig. 7
indicate that κ increases with the speed of the perturbation, i.e., the amplitude of the wave decays
faster as v increases. This trend seems to hold for the different sets of experiments conducted during
this study. However, a quantitative analysis of the decay constant for the different elastic sheets is
beyond the scope of the present work.

APPENDIX C: TENSION IN THE FILM

1. Tension isotropy

A schematic of the elastic sheet is shown in Fig. 8(a). The tensions along the x and y axes are
denoted by σxx and σyy , respectively. We place ball bearings directly on the sheet floating on water
and we image the resulting deformation using the optical schlieren method [42]. We then calculate
the magnitude of the displacement vector field, which is directly linked to the deformation of the
elastic sheet. Sample isodisplacement lines are shown in Fig. 8(b). We quantify the anisotropy of the
deformation by fitting the isodisplacement lines to ellipses. We define the aspect ratio ε = rx/ry ,
where rx and ry are the radii along the x and y axes, respectively, to quantify how circular the
isodisplacement lines are. The best fit to ellipses for the four cases shown in Fig. 8(b) are all found
to be ε = 1 ± 0.02, meaning that the isodisplacement lines are, within experimental error, equivalent
to circles. Thus the tension in the sheet is isotropic. Indeed, if σxx or σyy was larger than the other,
the deformation would be elongated along the low-tension direction, leading to an aspect ratio ε

different from 1.
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FIG. 7. The y component d of the displacement field normal to the wave front, already shown in Fig. 3(d),
for three different speeds v = 0.4, 0.6, and 0.9 m s−1. The black dashed lines show the best fit of Eq. (B1) to
the experimental profiles.

2. Tension measurement

The tension σxx along the x axis is set by the water-air surface tension γ , as both the left and
right edges are free [see Fig. 8(a)]. Since all the experiments presented in the study are performed
on sheets where the tension is isotropic, one can safely assume that σ = σyy = σxx = γ . The
tabulated value for the pure water-air surface tension under ambient conditions is γ = 72 mN m−1,

σxx σxx

σyy

σyy

x

y

( )b()a

FIG. 8. (a) Top-view schematic of the elastic sheet floating on water. Plastic beams are placed along the
radial edges of the elastic sheet as shown in black to ensure that the sheet does not crumple. Ball bearings
are dropped atop the sheet to verify that no anisotropy is introduced when placing the beams. (b) Picture of the
reference dot pattern, seen through the water and the sheet, around a ball bearing. The solid lines are sample
isodisplacement lines. The dashed lines are the best fits of the isodisplacement lines to ellipses. The best-fit
ellipticities are found to be equal to 1 for all cases.
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FIG. 9. Angular wave number k as a function of perturbation speed v, for the gravitocapillary waves at
the surface of deep water. The dashed line shows the best fit of Eq. (C1) to the experimental data points. The
water-air surface tension γ = 47 mN m−1 is obtained as the only adjustable parameter.

but it is extremely sensitive to contamination by all kinds of surfactants. Since the experiments are
conducted in an open tank containing ∼200 L of water, contamination is unavoidable. Therefore, γ

is measured from two independent methods.
First, using a Wilhelmy-plate setup, γ is found to be between 40 and 55 mN m−1, for water from

three different sources: water from the tank after one day, tap water, and deionized water. The largest
value of γ is obtained for deionized water and the smallest one for the water from the tank, which
is consistent with tank contamination over time.

Another approach to measure γ is to invoke the gravitocapillary waves formed at the surface of
deep water by a perturbation moving at constant speed v. In such a case, the analog of Eq. (3) is [7]

v =
√

γ k

ρ
+ g

k
. (C1)

Therefore, γ can be evaluated by fitting Eq. (C1) to the experimental evolution of the angular wave
number k as a function of speed v for gravitocapillary waves. In fact, as the elastic sheet only covers
a small portion of the water in the tank, the hydroelastic waves are only observed once a lap when
the sheet moves across the stationary perturbation at speed v. Otherwise, water flowing at speed v

is directly exposed to the perturbation and gravitocapillary waves are instead formed at the surface.
Using the schlieren method, the wavelength λ = 2π/k of the upstream gravitocapillary waves is
measured as a function of speed v. The measurements of the wavelengths for both the hydroelastic
and the gravitocapillary waves are thus performed simultaneously. Figure 9 shows the evolution of
the angular wave number k as a function the speed v, for the gravitocapillary waves. By fitting the
experimental data to Eq. (C1), we find γ = 47 mN m−1.

Note that the last measurement is performed during the characterization of the hydroelastic waves
on a sheet of thickness h = 50 μm. Similar measurements are also performed during the character-
ization of the hydroelastic waves on sheets with larger thicknesses h = {100; 200; 250} μm. How-
ever, in those cases, the wavelength for the gravitocapillary waves is measurable only for the lowest
speed, v ≈ 0.2 m s−1. For all those three measurements, we get γ = 47 mN m−1. Considering all
the measured values from both methods, we reach the conclusion that γ = 50 ± 10 mN m−1.
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APPENDIX D: THEORETICAL EXPRESSION FOR THE MINIMAL VELOCITY
AND ANGULAR WAVE NUMBER

As explained in Sec. III B, there exists a minimal velocity v∗ below which there is no wave
propagation. It is given by

v∗ =
(

2

27

)1/4
√√√√√σ

(√
12Bgρ + σ 2 − σ

) + 12Bgρ

ρ

√
B

(√
12Bgρ + σ 2 − σ

) . (D1)

This minimal velocity is reached at an angular wave number k∗, given by

k∗ =
√√

12Bgρ + σ 2 − σ

6B
. (D2)
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