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We examine the shape of droplets atop deformable thin elastomeric films prepared with an anisotropic
tension. As the droplets generate a deformation in the taut film through capillary forces, they assume a
shape that is elongated along the high tension direction. By measuring the contact line profile, the tension in
the membrane can be completely determined. Minimal theoretical arguments lead to predictions for the
droplet shape and membrane deformation that are in excellent agreement with the data. On the whole, the
results demonstrate that droplets can be used as probes to map out the stress field in a membrane.
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The physics of liquid droplets in contact with soft or
deformable solids, elastocapillarity, is an active subject of
research. Between capillary origami and wrinkling insta-
bilities of thin films [1–9], the bending, coiling, and
winding of slender structures [10–16], and elasticity-
mediated propulsion of droplets [17–19], there is no
shortage of complexity, self-assembly, or beautiful exam-
ples of pattern formation in the field. In addition, some
recent results have forced us to question familiar concepts
of solid-liquid interactions. For instance, studies on the
partial wetting of liquid drops on soft solids show that
Young’s law is applicable on length scales much larger than
the bulk elastocapillary length γ=E, where γ is the liquid-air
surface tension and E is the Young’s modulus of the solid.
However, on smaller length scales, the contact line reveals a
wetting ridge set by a Neumann construction involving
surface stresses [20–26].
Partial wetting on deformable substrates may also be

studied by employing a highly compliant geometry, such as
a droplet on a thin freestanding film [27–31]. These studies
have considered clamped films which are held taut and
support a uniform and isotropic tension. As shown in
Fig. 1(a), the Laplace pressure of the droplet creates a bulge
in the film below it, in the shape of a spherical cap, which is
of the same order in size as the droplet itself. The
deformations generated may be orders of magnitude larger
than the bulk elastocapillary length, because stretching of
the membrane is the relevant mode of elasticity [28–31].
The contact line profile is determined by a Neumann
construction, which incorporates both mechanical and
interfacial tensions. This profile is characterized by the
angles subtended by the liquid (θd) and bulge (θb) to the
surrounding film [Fig. 1(a)], which remains completely flat,
i.e., the film’s angle relative to the horizontal θm ¼ 0. From
the Neumann construction, these angles are set by two
parameters: the Young’s angle θY of the same solid

supported on a rigid substrate and the ratio T in=γ, where
T in is the total mechanical and interfacial tension acting
inside the contact region of the membrane or drop system
[31]. In the limit of infinite tension, the bulge vanishes and
Young’s law is recovered.
In this study, we explore the partial wetting of a liquid

droplet resting on an elastomeric membrane with an
anisotropic tension. Surprisingly, the droplet assumes a
shape which is elongated along the direction of high
tension. We show from minimal theoretical considerations
that the tensions in the film determine both the elongated
shape of the wetting region and an observed out-of-plane
deformation of the film surrounding the droplet. Therefore,
liquid droplets serve as nondestructive probes for mapping
out the stress field in a membrane.

FIG. 1. (a) Schematic of the side view of the drop and
membrane system. The contact angle profile is determined by
the force balance shown. On the right, an optical image of the
contact line region taken along the x direction is shown. The dark
part is the liquid, the lighter gray part below is simply a reflection
of the droplet off the film, and the thin light curve on the right
(indicated by arrows) is the film itself. (b) Schematic of a
freestanding elastomeric film between two supports with a single
droplet atop. An optical top view image of the droplet is shown on
the right. Scale bars ¼ 200 μm.
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Freestanding elastomeric films of thickness h ∼ 240 nm
were prepared from Elastollan TPU 1185A (BASF) and
suspended between two supports, as seen in Fig. 1(b) [32].
The sample is then stretched along the y direction to
produce a biaxial mechanical tension T, such that Ty > Tx.
As can be seen in Fig. 1(b), since the edges in the x
direction of the film are free, the membrane assumes a
bowed configuration. However, at the center of the film, far
from the edges, there is a biaxial tension which is uniform.
In an experiment, a droplet of glycerol is placed near the
center of the film. In doing so, we find that the droplet
assumes a noncircular footprint which is elongated along
the high tension direction [Fig. 1(b)]. Initially, the contact
line is seen to move as the droplet configuration equili-
brates, indicating that there is no pinning in our system.
Thus, we wait until the contact line reaches equilibrium
(∼5 min) before performing measurements. We advise that
contact angle hysteresis should be minimized a priori so
that equilibrium contact angles are indeed measured.
Optical contact angle measurements are performed by
viewing the sample from the side. These measurements
are taken in two directions: viewing the sample from the x
direction, where the bulge and liquid-air interface can be
simultaneously seen [as in Fig. 1(a)], and viewing the
sample from the y direction. When observing from the y
direction, the supports block the view of the lower side of
the film; hence, two separate droplets are needed, one on
the top side and one on the bottom side of the film, to get
images of both the bulge and liquid-air interface. Images of
the two droplets are also taken from above, from which we
obtain precise measurements of the contact radii rx and ry
and, hence, the aspect ratio ϵ≡ ry=rx. We use droplets with
contact radii in the range of 300 − 450 μm, small enough
that gravity does not play a role but large enough that
evaporation does not influence our measurements over the
experimental time scale. The droplets are much smaller
than the overall lateral size of the film.
A sample optical image taken from the x direction is

shown in Fig. 2(a), where the droplet is sessile on top of the
film, generating a bulge below it. The true 3D shape of the
liquid-air interface is unknown. Nevertheless, its interface
must have a constant mean curvature to ensure a constant

internal pressure. However, to simplify our analysis, we fit
all liquid-air interface profiles to circular caps and extract
the average radii of curvature Rd;x and Rd;y. As can be seen
by the solid curve in Fig. 2(a), these fits exhibit excellent
agreement with our experimental images [32]. We note that
Rd;y > Rd;x in further support that the droplet’s shape is not
spherical. Knowing ri and Ri in each direction i ¼ x, y, the
contact angles θd;x and θd;y [defined as the angles the
liquid-air cap makes at the contact line relative to the x − y
plane as seen in Fig. 1(a)] can be determined. Furthermore,
the bulge profiles are fit to parabolas, the justification for
which will be provided later. As can be seen by the dashed
curve in Fig. 2(a), we find these fits to capture the bulge
profile well [32]. From these fits, we determine θb;x and
θb;y, defined as the angles the bulge makes at the contact
line relative to the x − y plane, as defined in Fig. 1(a).
We describe our films as membranes where bending can

be ignored, and, hence, the membrane slope is thought of as
being discontinuous at the contact line. In reality, there
exists a narrow region near the contact line where bending
dominates and the membrane curves to connect the bulge
region to the outside region. However, since this bending
region is too small to be measured in our experiments, the
membrane description is appropriate. For droplets on
membranes with isotropic tension, the film is flat outside
the contact region, and the contact line shape is completely
determined by θd and θb [28–31]. However, for films with
anisotropic tension, the film experiences an out-of-plane
deformation outside the wetting region. Therefore, a
complete picture of the contact line profile must include
the angle of the membrane relative to the x − y plane at the
contact line which we denote with θm. As can be seen in
Fig. 1(a), the membrane curves down towards the droplet in
the y direction, which we define to correspond to θm > 0.
Conversely, the film curves up towards the droplet in the x
direction and θm < 0. Since jθmj is small (< 4°) and the
membrane is difficult to resolve optically, we employ
optical profilometry (Veeco, Wyko NT1100) to probe the
out-of-plane deformation of the membrane, w, where
w > 0 is defined to indicate the side from which the liquid
droplet is placed. One such profilometry scan taken from
the droplet side is shown in Fig. 2(b). The membrane is
pulled towards positive w on the low tension side while
being displaced towards negative w on the high tension
side. From the profilometry data, it is straightforward to
determine the values of θm in the two principal directions:
x and y.
Although the tension in the membrane is not known

a priori, it may be determined using the contact line profile,
as has been demonstrated in previous studies [28–31].
Through a Neumann construction, as depicted in Fig. 1(a),
where T in and Tout ¼ T in þ γ cos θY contain mechanical
and interfacial tensions (see Ref. [31]), the contact line
profile in a given direction is completely determined by the
values of T in=γ and θY . The contact line profile is entirely

FIG. 2. (a) Optical side view taken from the x direction. The
solid curve is a circular fit to the liquid-air interface, and the
dashed curve is a parabolic fit to the bulge. (b) Optical profil-
ometry scan taken from above the droplet depicting the z
displacement w of the film surrounding the wetting region (dark
elliptical area).
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characterized by the three internal angles subtended at the
contact line: π − θd − θm, θd þ θb, and π − θb þ θm. The
Neumann construction is able to predict only these internal
angles, not θd, θb, and θm individually. Therefore, using the
value for θY and the angles θd, θb, and θm, we fit the
internal angles to the Neumann construction prediction in x
and y with T in;x=γ and T in;y=γ as the fitting parameters (see
Ref. [32]). The best fit allows us to extract values of T in;x=γ
and T in;y=γ. A sample fit is provided in Table 1, where it is
clear that a single value of T in;x=γ captures the data well.
The tensions measured in this way were found to be
consistent with tensions computed from the strains in the
film during stretching, attained using particle tracking in a
separate experiment [32].
We now turn to theoretical considerations and begin with

some simplifications to render the problem more tractable.
First, we restrict our analysis to the case in which ϵ is close
to unity, where the shape of the droplet may be treated as a
perturbation to a spherical cap. As such, we make the
assumption that the liquid-air interface profile as viewed
along a general sight line oriented at ϕ [Fig. 1(b)] is simply
a circular cap with its own radius of curvature. This
assumption is validated by the fact that such profiles are
well fitted to circular caps [32]. Similarly, as will be
justified later, all profiles of the bulge are parabolic in a
good approximation. We make the simplistic assumption
that the deformations produced by the two droplets on
the film are perturbative only to the pretension. This
assumption was found to be valid in a previous study done
with isotropic tension [31] but is further supported by the
fact that the contact angles are unchanged as additional
droplets are placed onto the film as well as by the tension
measurement done using particle tracking [32]. Finally, we
make small angle approximations when appropriate [37].
To predict the shape of the droplet’s footprint, i.e.,
projection of the wetted region onto the x − y plane, we
make use of the fact that the total height from the bottom of
the bulge to the top of the droplet must be equal in
every profile. We find that the contact radius rϕ [defined
in Fig. 1(b)] of the footprint is given by (see Ref. [32])

rϕ

�
arccos

�
cos θY −

γ

2T in;ϕ
sin2θY

��
¼ C; ð1Þ

where T in;ϕ is the total (mechanical and interfacial) tension
in the ϕ direction in the region under the droplet and C is a

constant which simply sets the overall length scale. We see
that rϕ increases with T in;ϕ, consistent with the observation
that droplets are elongated along the direction of highest
tension. Since the membrane tensions are assumed to be
unchanged by the addition of droplets, the tension remains
purely biaxial with its principal axes aligned along x and y,
and T in;ϕ ¼ T in;xcos2ϕþ T in;ysin2ϕ [38]. In Fig. 3(a), we
show an optical top view of an elongated droplet on a
film, where we also plot Eq. (1) as a solid curve with
C ¼ 514 μm found by fitting. We see that Eq. (1) provides
an excellent approximation of the elongated shape of the
footprint. Furthermore, Eq. (1) can be used to determine ϵ
without any free parameters. We see that the aspect ratio is
high when T in;y is large while retaining a small T in;x. For a
quantitative comparison with our experimental observa-
tions, we refer to Fig. 3(b), where all measurements of the
aspect ratio ϵexp are plotted against their predicted values
ϵth, computed using Eq. (1) and the measured values of
T in;x=γ and T in;y=γ. We find a good agreement between the
experimental and theoretical values of ϵ. We note that ϵth is
systematically smaller than ϵexp, which we attribute to the
simplifications made in the theory.
To construct a full theoretical treatment of the membrane

deformation, one may follow the approach laid out in
articles by Davidovitch and co-workers, where the Föppl–
von Kármán equations are solved in the limit of negligible
bending contributions [7,8,39]. However, further simplifi-
cations can be made when the deformation of the
membrane by the droplet does not notably modify the pre-
existing tension. Justified by our experimental observa-
tions, we have already made this assumption (in the claim
that T in;ϕ remains biaxial) to simplify the description of our
system. As such, the deflection of a membrane (w) carrying
a uniform biaxial tension of T in;x, T in;y is given by [32,40]

TABLE I. Sample fit of contact angle data in the x direction to a
Neumann construction to extract T in;x=γ ¼ 2.7� 0.15.

Experiment Best fit

ðθd;x þ θm;xÞ 57.8� 1.2° 59.5� 0.6°
ðθd;x þ θb;xÞ 76.6� 1.1° 78.1� 0.6°
ðθb;x − θm;xÞ 18.8� 0.8° 18.7� 1.1°

(b)

(c)

(a)

FIG. 3. (a) Top view image of an elongated droplet (ϵ ∼ 1.09)
where the solid curve represents the best fit of Eq. (1) and the
dashed curve is a circle drawn for comparison. Scale
bar ¼ 200 μm. (b) A comparison between the experimental
and theoretical values of ϵ for all samples. The line drawn
represents ϵth ¼ ϵexp. (c) Vertical position of the contact line
around a sample droplet, where the points correspond to
experimental data and the solid curve is calculated from Eqs. (1)
and (3) with A and B obtained from bulge profile fits.
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T in;x
∂2w
∂x2 þ T in;y

∂2w
∂y2 ¼ −pðx; yÞ; ð2Þ

where p is the pressure distribution acting on the film. This
equation is essentially Laplace’s law but with anisotropic
tension and in the limit of small membrane slopes. The
small slope approximation is appropriate in this case, since
the bulge contact angles are always below 25°. From this
equation, it is straightforward to solve for the shape of the
bulge, which forms in response to the uniform Laplace
pressure over the wetted region. We propose a solution of
the form

w ¼ Ax2 þ By2 þ w0; ð3Þ

where w0 is an arbitrary vertical shift and A and B are found
experimentally [32]. Thus, any vertical cross section of the
bulge passing through its apex is simply a parabola, which
is the reason for fitting the bulge profiles with parabolas to
extract θb;x and θb;y. From these parabolic fits, the values of
A and B are determined. Of course, we must still ensure
Eq. (2) is satisfied. Substituting w back into Eq. (2)
generates a criterion which can be written as [32]

T in;x

γ
θb;x þ

T in;y

γϵ
θb;y ¼ sin θd;x þ

1

ϵ
sin θd;y: ð4Þ

Evaluating both sides of Eq. (4) using all our data yields a
constant value of 1.75� 0.03 for the left side and 1.70�
0.06 for the right side, indicating that the data and theory
are consistent.
A striking aspect of the system is the out-of-plane

deformation of the membrane surrounding the wetting
region, as evidenced in Fig. 2(b). As shown for a sample
droplet in Fig. 3(c), the vertical position wc of the contact
line relative to its average value oscillates with ϕ. Knowing
all parameters in Eqs. (1) and (3), we may attain a
prediction for wc by evaluating Eq. (3) at the position of
the contact line given by Eq. (1). Therefore, we plot the
prediction of the data in Fig. 3(c) with a solid curve and find
that it exhibits excellent agreement with the data.

As we have seen, droplets are elongated along the high
tension direction; i.e., the major and minor axes of the
droplets’ footprints align with the principal tension direc-
tions in the membrane [38]. We can further test this
property by a separate experiment where samples are made
with different stress fields in which the principal directions
are known. As shown in Fig. 4(a), water droplets have been
sprayed onto a freestanding elastomeric film on a circular
washer, where the tension is completely isotropic and
uniform. A thin glass pipette has then been placed into
contact across the film but does not significantly modify the
film’s stresses. As such, the droplets are completely round,
in agreement with previous work done with isotropic
tension [31]. After these droplets have evaporated, we
displace the pipette slightly towards the right, as seen in
Fig. 4(b), which generates a shear stress in the membrane.
If a membrane with isotropic stress is subjected to a shear
stress τxy, the principal directions of the stress are aligned at
45° to the x and y axes regardless of the shear’s magnitude
[38]. To employ this known stress field as a test, we spray
water droplets onto the film and fit the footprints of these
with ellipses to extract the major (minor) axis, which is
displayed in Figs. 4(b), 4(c) as a long (short) line.
Computing the average angle that the major axes subtend
to the pipette, we find 44� 8°, as we would expect. Finally,
at a free (i.e., stress-free) boundary, the principal directions
are tangent (high tension) and normal (low tension)
to the boundary [38]. We thus purposely deposit liquid
droplets near the bowed edges [see Fig. 1(b)] of our
stretched sample, as seen in Fig. 4(c). Indeed, the
major and minor axes plotted atop the droplets align with
the principal directions. Note that, although we do not
observe any mutual influence between droplets, we expect
such an effect to become important at sufficiently small
separations.
In this work, the droplets’ elongated shape stems from

the anisotropy in the compliance of the freestanding film in
the two orthogonal directions. On the other hand, it is
known that droplets atop stretched substrates which are
noncompliant in the out-of-plane direction may also
experience anisotropic wetting conditions and become

FIG. 4. (a) Droplets on a film with isotropic tension with a pipette laid across the film (schematized in the inset). (b) The pipette is
moved in the direction indicated by the arrow to shear the film (schematized in the inset, where the thin diagonal lines indicate the
principal direction of high tension). (c) Droplets deposited near the boundary (see the inset) of a film. The major (minor) axis of the
droplets are indicated by a long (short) line in (b) and (c).
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elongated [41–43]. This is a result of two effects: aniso-
tropic molecular forces or compositions caused by stretch-
ing the molecules at the surface [41,42] or an induced
anisotropy in the topographical roughness [43,44]. These
effects do not contribute to the results within our study,
since droplets are round when placed atop stretched films
which have been transferred onto a rigid substrate.
We have performed experiments studying liquid droplets

atop deformable membranes which carry an anisotropic
tension. Droplets assume shapes which deviate from
spherical caps and become elongated along the direction
of highest tension. By measuring the contact line profile,
we completely determine the tensions in the membrane.
Using these tensions, along with a minimal theoretical
model, we are able to form accurate predictions for the
elongated shape of the droplet’s footprint and the out-of-
plane deformation of the membrane surrounding this
region. Thus, liquid droplets may be used as a tool to
map out the magnitudes and directions of the stresses in a
membrane—analogous to iron filings in magnetic fields.
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