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In this paper, we analyze the behavior of hydrophobic polyelectrolytes. It has been proposed that this system
adopts a pearl necklace structure reminiscent of the Rayleigh instability of a charged droplet. Using a
Poisson-Boltzmann approach, we calculate the counterion distribution around a given pearl, assuming the
latter to be penetrable for the counterions. This allows us to calculate the effective electric charge of the pearl
as a function of the chemical charge. Our predictions are in good agreement with the recent experimental
measurements of the effective charge by Essafi et al. (Essafi, W.; Lafuma, F.; Baigl, D.; Williams, C. E.
Europhys. Lett. 2005, 71, 938.). Our results allow us to understand the large deviation from the Manning law
observed in these experiments.

I. Introduction

The study of polyelectrolytes has attracted an increased
attention in the scientific community over the last decades. This
interest is motivated by technological applications including
viscosity modifiers, or leak protectors, and by the hope that
advances in this domain will allow to unravel the structure of
complex biological macromolecules. In these systems, the
Coulomb interactions leads to many remarkable and counter-
intuitive phenomena.1-5 A celebrated example is the Manning-
Oosawa counterion condensation. In his classical work,1 Man-
ning showed that a charged rod-like polymer can create such a
strong attractive force on its counterions that a finite fraction
condenses onto the polymer backbone. This condensation
phenomenon was also described by Oosawa within a two-state
model.2 It leads to an effective decrease of the polymer charge,
and the macroscopic properties of the polyelectrolyte, like
migration in an electrophoresis experiment, are not determined
by its bare charge but by an effective charge that accounts for
the Manning-Oosawa counterion condensation. It is now well-
established that counterion condensation is a fundamental
phenomenon and that it occurs in many important systems
including DNA in both its double-stranded and single-stranded
form.6 It was predicted in ref 1 that condensation occurs
whenever the average distance l between co-ions (assumed here
to be monovalent) on the polymer backbone is smaller than the
Bjerrum length lB ) q2/(4πεε0kBT), where q is the elementary
charge, kBT the thermal energy, and ε the (relative) dielectric
constant of the solvent. This condensation is expected to lead
to an average charge density of q/lB on the polymer backbone.
Since the original prediction by Manning, important efforts have
been devoted to a description of the Manning-Oosawa con-
densation within the Poisson-Boltzmann theory and beyond,7-11

establishing the influence of salt, the thickness of the condensed
counterion layer, and the corrections induced by short-range
correlation.

While the conformation of many polyelectrolytes is well
described by the rod-like model, many proteins organize into
complex self-assembled structures.12 A challenging and impor-
tant topic is the extent to which the structural complexity of
biological enzymes can be understood from simple physical
models. Polyelectrolytes with a hydrophobic backbone may
provide an interesting system that achieves a certain degree of
self-organization while the relevant interactions remain relatively
simple. Indeed, it has been predicted in a seminal paper by
Dobrynin and Rubinstein that hydrophobic polyelectrolytes
should fold into an organized pearl necklace structure where
regions of high and low monomer density coexist.13 Therefore,
both theoretical and experimental studies of the hydrophobic
polyelectrolytes have shown a growing activity in the past few
years.4,5,14-21

The question of the validity of the Manning condensation
model for hydrophobic polyelectrolytes has been addressed
experimentally by W. Essafi et al.22 The authors have measured
the effective charge fraction of a highly charged hydrophobic
polyelectrolyte (poly(styrene)-co-styrene sulfonate) by osmotic
pressure and cryoscopy measurements. Their findings, which
are recalled in Figure 4, showed that the measured effective
charge is significantly smaller than that predicted by the
Manning-Oosawa theory. The aim of the present article is to
provide a theoretical explanation of the counterion condensation
in this system, where the hydrophobicity of the backbone
strongly influences its conformation. This problem was first
addressed theoretically by Dobrynin and Rubinstein,17 who
analyzed the phase diagram of a solution of hydrophobic
polyelectrolytes as a function of solvent quality and polymer
concentration. However, the question of the effective charge of
the chains was not directly investigated by the authors.

The rest of the paper is organized as follows. In section II,
the pearl necklace model is reviewed briefly, while the
Poisson-Boltzmann theory of a hydrophobic globule permeable
to counterions is performed in section III. The resulting effective
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charge is analyzed in section IV. Some aspects of the model
are discussed in section V, and finally, section VI concludes
the paper.

II. Review of the Pearl Necklace Model

Let us first recall, for completeness, the pearl necklace theory
of hydrophobic polyelectrolytes (for a more complete review,
see ref 21). The polyelectrolyte solution is parametrized by its
degree of polymerization N, its monomer size b (for the
polyelectrolytes used by W. Essafi et. al, one has b ≈ 0.25 nm),
the charge fraction along the chain f, and the reduced temper-
ature τ ≡ 1 - Θ/T, where Θ and T denote the theta temperature
of the polyelectrolyte and the temperature of the system,
respectively. We note that in a bad solvent, the reduced
temperature is negative τ < 0. Let us denote by C the average
monomer concentration in the solution.

In a poor solvent, an uncharged polymer forms a globule in
order to decrease its surface energy. In a similar way, a drop of
water adopts a spherical configuration in a hydrophobic
environment.

To estimate the gyration radius Rg of the polymer, we divide
the polymer into smaller units, in such a way that inside of
each unit, the thermal fluctuations dominate and the chain has
Gaussian behavior. These units are usually called thermal blobs
in the literature, and the typical radius of the blobs is denoted
by �T. It can be shown that they contain about 1/τ2 monomers
and have a typical size of �T = b/|τ|. At larger scales, the
polymer tends to collapse onto itself in order to minimize its
surface of contact with the liquid. This can happen by forming
a dense packing of thermal blobs. A polymer of polymerization
degree N can be split into τ2N thermal blobs, and the volume
occupied by the polymer is proportional to the number of
subunits. Therefore, one can estimate the gyration radius of the
polymer as

The surface energy ES associated with this configuration is given
by kBT times the number of thermal blobs in contact with the
solvent. This leads to

Upon charging, the electrostatic repulsion sets in, which
results in a change of the globule shape. When the electrostatic
repulsion energy becomes larger than the surface energy, the
globule splits into several globules of smaller size consisting
of Ng monomers. According to eq 1, the typical size of these
globules is given by

This behavior is reminiscent of the Rayleigh instability of a
charged droplet.23 In this state, the polyelectrolyte forms a
sequence of globules that are connected by strings made of
thermal blobs (see Figure 1). In the literature, this conformation
is known as the “pearl necklace” structure. The presence of
counterions will screen the electrostatic repulsion. Therefore,

it is important to account for their role explicitly in the balance
between the surface tension and the electrostatic repulsion that
governs the equilibrium structure of the necklace.

For simplicity, we assume that the main effect of the
counterions is to reduce the charge of the pearls. Indeed, some
counterions can be attracted inside of the globules due to the
attractive electrostatic forces. In the absence of any counterion
condensation, the total electrostatic charge of a globule consist-
ing of Ng monomers is simply given by qfNg. (where q is the
elementary charge). If the (monovalent) counterions penetrate
inside the globule, its effective charge is decreased and is given
by qfeffNg, where feff denotes the effective charge fraction. We
can understand this relation by noting that in the presence of
counterion condensation, the total charge of the pearl is the
chemical charge of the pearl minus the charge of the counterions
inside of it. Therefore, the electrostatic energy Eel of a pearl
can be estimated as

where the Bjerrum length is defined as

where ε is the dielectric constant of the medium and kBT denotes
the thermal fluctuation energy. For example, for water at room
temperature (T ) 300 K, ε ) 80), the value of the Bjerrum
length is lB ≈ 0.7 nm. Using the relation between Rg and the
Ng given in eq 3, the electrostatic energy of a pearl is simplified
to

In its equilibrium configuration the pearl necklace tends to
balance its electrostatic and surface energies Eel = ES. Inserting
the results of eqs 2 and 6 into this equality leads to an expression
of the globule radius Rg as a function of the effective charge
fraction feff

Rg
3 = τ2N�T

3 =
Nb3

|τ|
(1)

ES

kBT
=

τ2Rg
2

b2
(2)

Rg
3 =

Ngb
3

|τ|
(3)

Figure 1. Schematic drawing of the pearl necklace structure of
hydrophobic polyelectrolytes. Inside of the blue (gray) circle, the
polymer backbone, represented by a continuous black line, is wrapped
into a dense configuration of typical radius Rg, which we call pearl or
globule in the text. The inset shows on a larger scale that these pearls
are connected by thin polymer strings, thus forming the pearl necklace
structure. The average distance between the pearls is R (black vertical
scale line).

Eel

kBT
=

lB(feffNg)
2

Rg
(4)

lB ) q2

4πεε0kBT
(5)

Eel

kBT
= |τ|2f eff

2
lBRg

5

b6
(6)
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We stress that this relation between the typical pearl size and
the effective charge has been verified experimentally by D. Baigl
et al. in ref 24 with an X-ray diffraction technique. This suggests
that the hydrophobic polyelectrolytes studied in the experiment
of W. Essafi actually formed a pearl necklace structure.

III. Screening of a Globule in the Poisson-Boltzmann
Theory

The problem of the effective charge of spherical microion-
permeable globules of size Rg surrounded by their own coun-
terions can be solved in the mean-field approximation using
the Poisson-Boltzmann theory. This problem was first studied
numerically and analytically by Wall and Berkowitz.25 It was
shown that for such a globule, counterion condensation can
occur (see, e.g., ref 26 for a general discussion of the
condensation phenomenon). In this approach, a charged globule
is modeled as a sphere with radius Rg and a uniform charge
distribution inside of it. Therefore, the charge density of the
globule is given by

where F0 denotes the mean density of charged monomers that
are distributed inside of the globule. Using eq 3, F0 can be
simplified to

In the solution, the mean monomer concentration is denoted
by C. As far as the counterions are distributed inside of an
elementary cell of radius R (Wigner-Seitz approach), the
average concentration of the counterions is given by

Using the electroneutrality condition, one can find a relation
between the radius of the elementary cell, R, and the density of
the charged monomers inside of the globule as

Assuming a spherical symmetry for the charge distribution, all
of the quantities such as the electrostatic potential, the counterion
concentration, and so forth depend only on the distance r to
the center of the globule. Under the assumption of a Boltzmann
distribution, the concentration profile n(r) of the counterions is
related to the electrostatic potential φ(r) as

Inserting this expression into the Poisson equation ∇ 2φ ) -(1/
εε0)(qF0(r) - qn(r)) leads to the well-known Poisson-Boltzmann
(PB) equation

where F0(r) is given by

For our system with spherical symmetry in the charge distribu-
tion, the electric field is zero at r ) 0. Electroneutrality also
demands a vanishing electric field at the boundary r ) R, so
that the boundary conditions for the above PB equation read

In an elementary cell with the average counterion density
nav, the Debye screening length λD is given by

After defining the reduced electrostatic potential, u ≡ qφ/(kBT),
and x ≡ r/λD, the PB equation can be written as

where X denotes R/λD and A(x) is defined as

The radius of the globule in the dimensionless form is denoted
by xg ≡ Rg/λD. We will set A as the value of A(x) inside of the
globule, A(x) ) A for x e xg. Using the aforementioned reduced
variables and the cell neutrality condition, eq 11, one can find
the simple form of A as

where, in writing the last term, the explicit forms of F0, eq 9,
and nav, eq 10, have been used. It appears that A does not depend
on the chemical charge f. The quantity A may be seen as the
inverse packing (or volume) fraction.

The fraction of counterions outside of the globule, P, can be
found as

Rg = b( b
lB

)1/3 1

feff
2/3

(7)

qF0 = q
fNg

Rg
3

(8)

F0 =
f|τ|

b3
(9)

nav ) fC (10)

F0Rg
3 ) navR

3 (11)

n(r) ) nave
qφ(r)/kBT (12)

∇ 2
φ ) 1

r2

d
dr(r2dφ

dr ) ) -
qF0(r)

εε0
+

qnav

εε0
eqφ/kBT (13)

F0(r) ) { F0 =
fNg

Rg
3

r e Rg

0 r > Rg

(14)

dφ(r ) 0)
dr

) dφ(r ) R)
dr

) 0 (15)

1

λD
2
) 4πlBnav (16)

d2u

dx2
+ 2

x
du
dx

) eu(x) - A(x)
du(0)

dx
) du(X)

dx
) 0

(17)

A(x) ≡
F0(x)

nav
(18)

A )
F0

nav
) ( X

xg
)3
=

|τ|

Cb3
(19)

P )
∫rg

R
nave

qφ(r)/kBTr2dr

∫0

Rg F0r
2dr

)
∫xg

X
eux2dx

∫0

xg Ax2dx
(20)
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where, in writing the last term, the reduced variables and eq 19
have been used. Using eq 17, integration leads to a simpler form
of the above equation

As far as the penetrated counterions inside of the globule reduce
its charge, the effective charge of the globule is proportional to
the fraction of counterions outside of the globule. Therefore,
the effective charge of the globule can be written as

It has been shown in ref 25 that the potential u(x) defined by
the boundary problem, eq 17, is a decreasing function of x, and
the initial value of the potential satisfies eu(0) e A. Physically,
this inequality signifies the absence of overscreening (inside of
the globule, qn(r) e F0) as expected in mean-field theory.27 In
order to estimate the lower limit of eu(0), we rewrite eq 17 as

Since u(x) is a decreasing function, it may be shown that

where min (x, xg) yields the smallest quantity. After inserting
this result into the cell neutrality condition, ∫0

X x2[eu(x) - A(x)]dx,
we find that eu(0) satisfies the following inequality relations

where we have set Z̃g ) Axg
2/3 > e. The quantity Z̃g has a simple

interpretation as the total charge of the co-ions inside of
the globule Zg ) (4π/3)F0Rg

3 multiplied by the ratio between
the Bjerrum length and the globule radius lB/Rg. Indeed, the
following equality

can be checked using the relations Rg ) xgλD, F0 ) navA, and
the expression of the Debye length λD from eq 16. In what
follows, we will refer to Z̃g as the reduced globule charge. With
these notations, the chain of inequalities in eq 25 implies that
in the limit of large reduced globule charge Z̃g . 1, we have
eu(0)/A f 1.

The behavior of a typical solution u(x) is displayed in Figure
2. It confirms that for large values of Z̃g, the counterion
concentration at x = 0 is very close to the concentration of
charged monomers inside of the globule, eu(x) = A. As the value
of Z̃g increases, the size of the neutral region where u(x) ≈ ln
A grows until it becomes on the order of globule size xg.

Therefore, to keep the system electrically neutral, the counterion
concentration must fall down to values below nav outside of
the globule.

The transition between these two regions occurs in a narrow
layer of thickness � on the boundary of the globule, as shown
in Figure 2. In order to estimate the behavior of � in terms of
the physical parameters of the problem, it is convenient to write
the PB equation for x J xg in the following manner

We note that d2u/dx2 and du/dx are on the order of (ln A)/�2

and (ln A)/�, respectively. Putting these values in the above
equation, we find

We assume that we are in the regime where �/xg,1. Therefore,
� scales as

where we have neglected the logarithmic dependence on A. We
note that, for consistency, the requirement � , xg also implies
Z̃g . 1.

We are now in a position to estimate the counterion
concentration outside of the globule. Using eq 21 in the limit
of Z̃g . 1, the fraction of counterions outside of the globule is
found as

Using eq 26, we find that in the asymptotic regime of Z̃g . 1,
P depends only on the reduced globule charge Z̃g through the
simple equation

P(xg, A) ) - 3
xgA

du(xg)

dx
(21)

feff ) P(xg, A)f (22)

u(x) ) u(0) + ∫0

x (y - y2

x )[eu(y) - A(y)]dy (23)

u(x) ) u(0) + 1
6

min(x, xg)
2[eu(0) - A] (24)

1 - 2
ln(Z̃g/2)

Z̃g

e
eu(0)

A
e 1 (25)

Z̃g ≡ Zg

lB

Rg
) 1

3
xg

2A (26)

Figure 2. Typical behavior of counterion charge distribution n(x) and
effective potential u(x) in the cell. The dimensionless globule size is
denoted by xg, and the cell size is denoted by X. The n0 corresponds to
n(x ) 0) and is very close to F0 (the mean density of charged monomers
that are distributed inside of the globule; see eq 9). At large x, n(x)
tends to a (exponentially small) constant, as can be inferred from the
large x behavior of u(x).

d2u

dx2[1 + 2
x

du/dx

d2u/dx2] ) eu(x) (27)

ln A

�2 [1 + 2
�
xg] = A (28)

ln A

�2
= A ⇒ � = 1

√A
(29)

P(xg, A) =
1

xgA
u
�
=

6

√2e

1

xg√A
(30)

P ) � 6

eZ̃g

(31)
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The proportionality constant in eq 30 was calculated by
neglecting the first derivative term (1/x)(du/dx) in eq 17, as
explained in the context of eq 27, and solving the effective one-
dimensional problem. Figure 3 shows that there is a very good
agreement between the exact results and the analytical ap-
proximation in the limit Z̃g . 1 (� , xg). We also see that for
a wide range of A values, our analytical theory gives a good
numerical approximation for P as far as P j 0.4. For example,
for A ) 500, the relative error of our approximation is below
20% in this region. The exact numerical results were obtained
using the method described in ref 25. As a guide to the eye, we
have marked the parameter range explored in the experiments
of W. Essafi et al. with a black arrow on Figure 3. This range
was obtained from the experimental data as the ratio feff/f and
is well within the range of validity of eq 31.

IV. The Effective Charge of a Hydrophobic
Polyelectrolyte

In the regime explored experimentally by W. Essafi et al.,22

the value of the dimensionless parameter A can be estimated as
follows. For |τ| = 1, monomer concentration C ) 0.1 mol L-1,
and the bond length in the polymer b ) 0.25 nm, the expected
value of A = |τ|/(Cb3) is A = 103 . 1. The value of xg depends
on both the chemical and effective charge fraction, f and feff, as

Using eqs 22, 30, and 32, the effective charge fraction feff is
found to be

This result predicts that the effective charge fraction feff is
proportional to f3/2. We note that in this regime, the effective
charge does not depend on the average monomer concentration
C and depends only on intrinsic properties of the polymer. The
scaling law of eq 33 and the experimental data of Figure 4 of
ref 22 are shown in Figure 4. As one can see, there is a very
good agreement between the predicted behavior and the
experimental data. We stress that only one free coefficient of
order 1 has been used to adjust the data. Thus, our theory can
explain the origin of the difference between the effective charge
predicted by the Manning law recalled in Figure 4 and that
observed in experiments. Furthermore, using eqs 3, 7, and 33,
the globule radius Rg and the number of monomers inside of
the globule Ng are found to be Rg ∝ |τ|b/f and Ng ∝ |τ|4/f3.
Assuming that |τ| ∼ 1 and f varies in the range (0.2, 1), the
above estimation for Rg allows to one convert Z̃g into Zg. The
experimentally relevant range shown on the x axis in Figure 3
is Z̃g ∈ (25, 225), which corresponds to Zg in the range of
(8, 225).36

It is important to mention that in the experiments of ref 22,
only samples with a relatively high chemical charge fraction of
f g 0.3 were prepared, thereby limiting the range where our
theory can be checked. This is related to the difficulty to stabilize
solutions of hydrophobic polyelectrolytes with low chemical
charge because the polyelectrolytes can form a macroscopic
phase that is not soluble in the solvent. We expect that the
formation of a macroscopic phase can occur if the number of
monomers inside of a globule Ng becomes larger than the
polymerization degree of the polymer N. In this case, the
polymer chains must stick together to form globules of size Ng

≈ |τ|4/f3 > N, which may lead to form an entangled polymer
network that is not soluble in the solvent anymore. More detailed
theoretical studies are needed for this problem. We note that a
detailed analysis of the possible phases and their stability range
was performed in ref 28. As mentioned above, the dimensionless
factors are on order 1, and if we set N ) 1000, this condition
for phase separation reads feff < 1/(N)1/2 = 0.03. This result is
in a reasonable agreement with the results displayed in Figure
4. It is worth mentioning that in the experiments, no point could
be obtained below this limit. We also emphasize that in our
theory, when a stable pearl necklace structure forms, the
effective charge depends on Ng and not on polymerization degree
N. This property has been verified in the experiment, where N
has been varied from N ) 410 to 2400 without apparent change
of the measured values of feff.

V. Discussion

In the above treatment, we have assumed that the polyelec-
trolyte chain in a dilute regime forms a necklace structure in
the solvent. Liao et al.29 have studied the necklace formation in
polyelectrolyte solutions using both theory and molecular
dynamics simulations. They have shown that partially charged
chains form necklace-like structures of globules and strings in

Figure 3. Dependence of P on Z̃g
1/2 for different values of A. From

top to bottom, A ) 500, 50, and 10 (green, black, and red curves,
respectively), where A is the inverse volume fraction of the globules.
The bottom (blue) curve is eq 30. The arrow shows the P range explored
in the experiment. It is obtained by calculating the ratio feff/f from the
experimental data in Figure 4.

Figure 4. Effective charge fraction feff versus the chemical charge
fraction f. The experimental points were obtained in ref 22. The red
squares correspond to N ) 410, green circles to N ) 930, purple
diamonds to N ) 1320, and black deltas to N ) 2400. The blue solid
line corresponds to our theoretical model eq 33 with [b/(|τ|3lB)]1/2 )
0.4. The dashed line corresponds to Manning’s model. The dotted
(violet) line includes additional counterion condensation outside of the
permeable globule. We note that this effect is a rather weak correction
to the predictions of eq 33. It is discussed in detail in section V.

xg )
Rg

λD
=

|τ|1/2

A1/2 (lB

b )1/6 f 1/2

f eff
2/3

(32)

feff =� b

|τ|3lB

f 3/2 (33)
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dilute solutions. For the dilute regime, the phase diagram of
hydrophobic polyelectrolytes was obtained in ref 29. It has been
shown that when the effective charge of the chain is larger than
a threshold [b|τ|/(lBN)]1/2, the necklace structure is the dominant
feature of the polyelectrolytes in a bad solvent. Using eq 33
and the mentioned criterion, we find that for chains consisting
of more than 1/(|τ|2f3) monomers, the necklace structure is
formed in the system. For the experimental condition explained
in ref 22, |τ| = 1 and f > 0.2 gives 1/(|τ|2f3) = 150. All of the
chains that have been used in the experiment22 have more than
410 monomers on a chain, which means that our model
considering the necklace structure for the hydrophobic poly-
electrolyte in the solution is reasonable. We note that our scaling
approach does not allow one to predict accurately the phase
diagram of the polyelectrolyte chains. A consistent minimization
of the free energy would require one to properly account for
the logarithmic dependence of the counterion entropic and
electrostatic energy as a function of the pearl radius.30 The origin
of such logarithmic terms can be seen by estimating the entropy
of the counterions since the condensed counterions explore only
a phase volume of Rg

3 out of the total volume. In our analysis,
this dependence is ignored because the available phase volume
is limited to the size of the Wigner-Seitz cell in a periodic
system. Furthermore, the correlation-induced effects like the
nonmonotonic dependence of the solution osmotic coefficient
on the polymer concentration have been observed in computer
simulation analysis,29 which cannot be described in our model.

As we explained before, eq 33 is based on the validity of eq
30. It is justified provided that P , 1; our numerical calculations
suggest that reasonable agreement is already achieved for P j
0.4 for the experimental value of A = 103. For the parameters
used in Figure 4, the mentioned criterion is always satisfied.
Furthermore, by placing the pearls inside of neutral Wigner-Seitz
cells, we have ignored the effect of the interaction between
neighboring pearls on the counterion distribution. However the
sharp decrease of the counterion concentration on the boundary
of the globule (see Figure 2) suggests that these interactions
should not affect significantly the counterion distribution. We
have also ignored the effect of the ions along the strings that
connect adjacent pearls. This assumption can be checked by
estimating the fraction s of the charged monomers present inside
of the pearls. It can be shown that

where we have assumed that both the parameter (lB/|τ|3b)1/2 and
intermediate scaling constants are of order 1. These assumptions
are consistent with the parameters used in Figure 4. Our theory
holds as long as s = 1; that is when the effective charge feff is
small. While this is clearly the case in the range of small
chemical charge f, the contribution of the strings may become
important when f = 1. Physically, we expect that around the
strings, the counterions will follow the usual Manning conden-
sation behavior. Therefore, the effect of the strings will be
mainly to keep the effective charge feff below the Manning limit
b/lB. In Figure 4, the effective charge reaches this limit only at
f = 1; as a result, the effect of the strings is not visible, and our
prediction holds even up to f = 1.

Finally, we have not taken into account additional counterion
condensation outside of the permeable globule. A popular
criterion for counterion condensation in this setting was proposed

by Alexander et al.31 The renormalized charge Zg
* of an

impermeable globule of internal charge Zeff is determined from
a linearization of the PB equation that ensures the best possible
matching between the exact and linearized solutions at the
boundary of the Wigner-Seitz cell. In our case, the globule is
permeable, and Zeff is smaller than the charge of the co-ions
inside of the globule and is given by Zeff ) PZg. (We remind
that P stands for the counterion fraction outside of the globule.)
The dependence of the ratio Zg

*/Zeff on the system parameters is
governed by the dimensionless parameter Z̃eff ) ZefflB/Rg, where
Rg is the globule radius.31,32 This parameter can be estimated as
follows for the case of our permeable pearl model: Z̃eff ) PZglB/
Rg ) Pg. Inserting the expression of P from eq 31 leads to

Since the range explored by P is (0.15, 0.4), the above
expression allows us to conclude that Z̃eff ∈ (5, 15). We have
calculated the ratio Z*/Zeff in this parameter range using the
semianalytical method proposed in ref 33 and our numerical
procedure. The results obtained are presented in Figure 5 and
do not show significant renormalization in our regime. By
combining the numerical results for inverse volume fraction A
) 1000 and the analytical results from eq 33, we can calculate
the effective charge of the globules including condensation
outside of the globule. Indeed, the renormalized Alexander
charge of the globule is given by Z*/ZeffPf, where the product
Pf gives, as usual, the charge inside of the globule. The behavior
of the Alexander charge for this problem is shown in Figure 4
on the dotted line, which is the continuous line of equation feff

) Pf scaled down by a fator Z*/Zeff. The comparison between
these two curves confirms that eq 33 is a very good approxima-
tion for the effective charge of the globule. For example, in the
region explored experimentally, the difference between these
two curves lies within the experimental uncertainty range.

It is interesting to compare our results with the results of
Dobrynin and Rubinstein.17 These authors considered for the
first time the problem of counterion condensation around an
hydrophobic polyelectrolyte using a two-state model. They
determined the fraction P by using trial counterion densities of
the form n(r) ) (1 - P)navR3/Rg

3 inside of the globule (for r <
Rg) and n(r) ) PnavR3/R3 - Rg

3 in the outer region. This family
of density is parametrized only by the parameter P. Therefore,
by minimizing the counterion free-energy density functional on

s =
1

1 + feff� lB

|τ|3b

=
1

1 + feff
(34)

Figure 5. Ratio between the Alexander charge of the globule Zg
* and

the total charge inside of the globule Zeff ) PZg as a function of Z̃eff )
ZefflB/Rg for different values of the inverse volume fraction A. (A ≈
103 in the experimental conditions.) The black arrow indicates the
parameter range explored experimentally by Essafi et al. estimated from
eq 35.

Z̃eff ) �6Z̃g

e
) 6

eP
(35)
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this trial set, they could deduce an expression of P as a function
of the system parameters.34 However for reasonable values of
|τ|(b/lB)1/3 = 1 and for the experimental value of A = 103, the
value of feff predicted from the equations of ref 17 is very
close to f in most of the parameter range, in contradiction with
the experimental results of ref 22. We attribute the difference
between our model and the results of ref 17 to the two-state
model used to estimate the fraction of dissociated counterions
P. Indeed, in the two-state model, the charge density is constant
in the two regions inside and outside of the globule. The Poisson
equation then implies that in the two-state approximation, the
graph of the electric field (-du/dx in our dimensionless units)
as a function of x has a typical angle shape for all values of P,
as illustrated in Figure 6. In this figure, we have also compared
this approximation to the exact numerical behavior of -du/dx
for the typical parameters A ) 500 and xg ) 1. Since the charged
monomers at the center of the globule are neutralized by the
counterions, the true electric field distribution takes the form
of a narrow peak centered at xg. Because of its reduced family
of trial functions, the two-state model cannot reproduce the true
behavior of the electric field. However, the determination of
the effective charge requires an accurate knowledge of the
electric field in the whole cell. Therefore, we believe that the
two-state model is not accurate enough for the determination
of the effective charge. Indeed, it was shown in ref 35 that at
least a three-state model is necessary in the case of a permeable
droplet.

VI. Conclusions

In conclusion, we have developed a theory of counterion
condensation around hydrophobic polyelectrolytes. Our theory
is based on the pearl necklace model for the polyelectrolyte
backbone. We assumed that the pearls are permeable to the
counterions and use analytic results on the Poisson-Boltzmann
equation to establish the fraction of counterions condensed inside
of the pearls. It allows us to establish a power law dependence
of the effective charge feff on the chemical charge f as feff ∝ f3/2.
This prediction is in very good agreement with recent experi-
mental results by W. Essafi et al.22 and explains the large
deviation from the Manning law observed in these experiments.

While our main results concern the effective charge of hydro-
phobic polyelectrolytes, the scaling laws that we derived may
also apply to other areas of physics and chemistry where the
Poisson-Boltzmann equation plays an important role.
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Figure 6. Typical behavior of the dimensionless electric field -du/dx
using either the two-state model (dashed line) or our PB model (solid
line). The solid line corresponds to xg )1 and A ) 500.
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