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Propagation of a pressure step in a granular material: The role of wall friction

T. Boutreux, E. Raphae¨l, and P. G. de Gennes
Laboratoire de Physique de la Matie`re Condense´e, CNRS URA No. 792, Colle`ge de France, 11 place Marcelin Berthelot,

75231 Paris Cedex 05, France
~Received 3 October 1996!

More than one century ago Janssen@Z. Ver. Dtsch. Ing.39, 1045 ~1895!# proposed an elegant model to
describe the pressure variations in a vertical container filled with a granular material at rest. In the present
paper we build up a dynamical version of this model. We analyze the propagation of a pressure front in a dry
granular medium inside a cylinder, taking into account the solid friction that exists between the grains and the
cylinder walls. Assuming that the granular material under pressure has a linear elastic behavior, we derive a
linear partial differential equation for the pressure field. Using the Green function method, we determine
analytically the behavior of the granular medium undergoing a pressure step. We find in particular that a
pressure front propagates at speedc, the speed of sound in the granular material~within the linear elasticity
framework,c is a constant!. Due to friction at the cylinder walls, the front amplitude decays exponentially. We
also show that a stopping front starts after a certain time lag and propagates behind the pressure front, at a
speed larger thanc. When reached by this second front, the grains stop and do not move any more. The final
pressure profile that we predict when all grains have eventually stopped is similar, but not identical, to the
pressure profile determined by the Janssen model.@S1063-651X~97!10905-9#

PACS number~s!: 83.70.Fn, 46.10.1z, 46.30.Pa, 83.50.Tq
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I. INTRODUCTION

Granular materials are ubiquitous in our daily lives a
play an important role in many industrial and geophysi
processes@1,2#. Over the last decades, many new ideas a
techniques have been developed to understand the ex
tional properties displayed by granular systems@3–7#. Even
in the resting state, granular materials have unusual pro
ties. Consider, for instance, a tall cylindrical container fill
from the top with granular materials up to a heighth. For
h very small, the pressurep at the base of the containe
varies linearly withh, as would be the case for a norm
fluid. However, the pressurep does not increase indefinitel
as h increases. Instead, for a sufficiently tall column,p
reaches a constant value that is independent ofh. This easily
observed phenomenon was explained by Janssen a long
ago@8#: because of static friction between the grains and
sides of the container, the container walls support the we
of the extra mass placed on the top of the column.

In this article we shall build up a dynamical version of t
Janssen model. In order to do so, we shall consider a h
zontal cylinder filled with a granular material. At a give
time, sayt50, we shall impose a strong pressure at one
of the cylinder, and maintain it fort.0. We study how this
pressure step propagates inside the cylinder. Our aim i
find out how the acoustic response to the pressure ste
influenced by wall friction. In particular, we shall analyz
how a steady Janssen-like pressure profile is reached
t→1`. The phenomenon studied in this article is somew
analogous to the ‘‘water hammer’’ pressure developed al
a pipe by sudden closing of a tap@9#. The paper is organized
as follows. In Sec. II we recall and discuss the Jans
model. Our dynamical model is then presented in Sec. III
Sec. IV we solve the model analytically and show that
pressure step propagates inside the cylinder at the spee
sound of the bulk granular material. In Sec. V we show t
551063-651X/97/55~5!/5759~15!/$10.00
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a stopping front progressively invades the container, a
slice of granular material coming eventually to rest. The fin
state of the system turns out to be similar, but not identic
to Janssen’s state. The paper ends with some concludin
marks~Sec. VI!.

II. THE JANSSEN MODEL

Let us review and discuss the Janssen model@8#. Consider
a vertical cylinder of radiusR filled with grains at rest. The
granular medium is described by a continuum theory, and
aim of the model is to determine the pressure inside
material~induced by gravity! as a function of depthx ~where
thex axis is the cylinder axis, oriented downward!. Note that
the definition of ‘‘pressure’’ in a granular medium is tricky
A stress-induced birefringence technique@10–12# allows one
to observe the distribution of forces within a compress
granular material. This technique shows a network of lin
stress-transmitting paths, and regions with nearly no str
the spatial fluctuations of the pressure are large. Moreo
many linear paths are parallel to some preferred directio
pressure is anisotropic. In order to take this anisotropy i
account in the Janssen model, one defines two press
assumed to be constant over a horizontal plane:pg(x) acts
on the horizontal surface between two grain slices~a grain
slice is made of the grains located between two horizon
planes!, andpc(x) acts between the vertical surfaces of slic
and the cylinder inner sides. Because of the pressure an
ropy, pg(x) and pc(x) are a priori different. In order to
simplify the problem, one assumes that these two press
are proportional:pc(x)5Kpg(x), whereK is a constant. Let
us now determinepg(x) by writing that a thin grain slice of
thicknessdx and at depthx is at rest. As shown in Fig. 1, the
forces acting on this slice are~i! its weightw5pR2dxrg,
wherer is the grain density~assumed to be constant! and
g the acceleration of gravity,~ii ! the two pressure force
5759 © 1997 The American Physical Society
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5760 55T. BOUTREUX, E. RAPHAËL, AND P. G. de GENNES
acting on top and bottom of the slice

pR2@pg~x!2pg~x1dx!#,

~iii ! the solid static frictionf fric(x) of grains on the cylinder
sides. According to the laws of static friction,f fric(x) must
satisfy the double inequality

2m f p~x!< f fric~x!<1m f p~x!,

wherem is the friction coefficient between grains and t
container sides, andf p(x) the pressure force of the slice o
the sides: f p(x)52pRdxpc(x). In order to determine
f fric(x) we assume that the container has been filled from
top. When grains were poured, they moved downward
the ~dynamic! friction force acted upward. We assume th
when grains stopped, this force kept the same direction,
that grains at rest are about to slide down: friction is orien
upward, and its magnitude has the maximum value allow
by static friction; if grains were slightly pushed downwar
friction would not be able to increase any more and gra
would start to move. The friction force on the grain slice
thus given by

f fric~x!52m f p~x!52m2pRdxKpg~x!. ~1!

The slice being at rest, the sum of the forces applied t
must be equal to zero,

pR2dxrg2pR2dx
dpg
dx

22pRdxmKpg50. ~2!

FIG. 1. In a vertical cylinder filled with grains at rest, the pre
surepg(x) is calculated by writing the equilibrium of a grain slic
of thicknessdx at depthx. The forces acting on the slice are i

weightwW , the vertical pressure forcespW g(x) andpW g(x1dx), and the

solid static frictionfW fric(x) with the cylinder walls.
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Equation~2! can be rewritten as

dpg~x!

dx
1
pg~x!

l
5rg, ~3!

where the characteristic lengthl is given by

l5
R

2mK
.

The lengthl will play an important role throughout this
article. In practice, for our problem, the order of magnitu
of l is l;0.1 m~as shown in Sec. III!. Since the pressure in
the material is inhomogeneous on the scale of a few gra
but becomes homogeneous on the scale of, say, 50 o
grains,l is a relevant length scale if the grain size is smal
than 1 mm. Equation~3! admits the solution

pg~x!5lrg1@pg~x50!2lrg#expS 2
x

l D , ~4!

wherepg(x50) is the pressure that we may impose at t
top of the granular media. Equation~4! indicates that the
pressure reaches exponentially the limit valuelrg, with a
damping length given byl. Whenx is larger than;3l, the
pressure no longer varies because the cylinder sides sup
the extra weight of grains. This situation is very differe
from the case of a liquid, where the pressure increases
early with depth. Note that the limit pressurelrg and the
damping lengthl are independent of both the pressure i
posed atx50 and the container height. In practice,mK is of
order of 0.1@13#, so thatl'5R. The pressure distribution o
the Janssen model has been tested by different experim
@14,15#. In general, the pressure measured as a function
the depth has a shape similar to the Janssen pressurepg(x).
Yet the value of the limit pressure at large depths can v
with an amplitude as large as 50%, and the pressure is in
enced by the way the grains are poured in the cylinder
by the formation of stress arches supported by the conta
walls @16#. More details about these experiments can
found in Ref.@13#.

We now generalize the Janssen model by relaxing
assumptions that grains were poured in the cylinder from
top and are about to slide down. The friction forcef fric(x) is
no longer given by Eq. ~1!, but must only verify
2m f p< f fric<1m f p , and Eq.~3! for the pressurepg(x) is
now replaced by

2
pg~x!

l
<
dpg~x!

dx
2rg<1

pg~x!

l
.

This generalization allows us to imagine new experime
where the pressure is very different from the Janssen p
sure profile@17#. For instance, let us assume that we have
experimental setup which allows us to fill the container fro
the bottom by pushing up the grains; during this filling fri
tion at the sides acts downward. If we suppose that w
they stop, grains are about to slide up, we getf fric(x)
51m f p(x), and

pg~x!52lrg1@pg~x50!1lrg#expS 1
x

l D .
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55 5761PROPAGATION OF A PRESSURE STEP INA . . .
Pressure increases exponentially with depthx, because the
cylinder sides push grains downward. Another example
the experiment done in a cylinder with a friction coefficien
mu in its upper part, and a larger friction coefficientm l in its
lower part, so thatl l,lu . We assume that the containe
was filled from the top, that grains at rest are about to sli
down, and thatpg(x50),lurg. When the depthx in-
creases, the pressure first increases in the upper part of
cylinder frompg(x50) to a first limit valuelurg, and then
decreases exponentially in the lower part to a second lim
valuel lrg. These two examples show pressure distributio
that are qualitatively very different from the Janssen on
This underlines both the richness and the complexity of t
physics that mix continuum media and solid friction.

III. THE ‘‘WATER HAMMER’’ MODEL
FOR A GRANULAR MATERIAL

A. The water hammer model

The Janssen model described in Sec. II was intrinsica
static. We now want to build up a dynamical version of th
model in order to show how a Janssen pressure profile
actually be reached. Making a model of a granular mater
being poured inside a vertical silo is complicated; we sh
discuss such a filling in the conclusion of the present pap
~Sec. VI!. In this part of the article, let us consider the
slightly different and simpler situation shown in Fig. 2. W
first take a cylinder already filled with closely packed grain
We assume that the granular material is dry, and that ther
no adhesion of grains to the container walls. Yet there
solid friction between the grains and these walls. Since w
are not primarily interested in gravitational effects, we set t
cylinder horizontally. Before the experiment begins, grain
are at rest. At timet50, we strongly increase the pressure o
grains at one end of the cylinder, and thereafter keep co
stant the pressure at this end. In order to avoid complica
reflections on the other cylinder end, we assume that
container is semi-infinite. The pressure step propagat
studied in this article is analogous to the water hammer ph
nomenon that happens in a pipe when a tap is sudde
closed@9#.

As in the Janssen model, we assume that the granu
material can be described by a continuum theory. Let
denote byp(rW,t) and vW (rW,t) the pressure and velocity of
grains at positionrW and timet. We choose the Lagrangian

FIG. 2. The water hammer model for a granular material:
t50, we apply a pressure step at the end of the horizontal cylind
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description; for example,p(rW,t) is the pressure of the grai
slice whose position wasrW at t50. This pressurep acts on
the vertical surfaces between two slices of the granular
dium ~it was denotedpg in Sec. II!. Let us call the cylinder
axis thex axis; we takex50 at the compressed end an
x.0 in the semi-infinite container. We neglect the rad
dependence of pressure and velocity and assume tha
velocity is parallel to thex axis, so that pressure and veloci
are simply given by two scalar functions of two variable
p(x,t) and v(x,t). By packing grains inside the cylinde
before the experiment begins, we get a press
p(x>0,t,0). Experimentally, this initial pressure may n
be reproducible. Here, we assume that the pressurep0 im-
posed at the cylinder endx50 for t>0 is much larger than
the initial pressure, so that we can neglect it and get as
initial condition in our modelp(x.0,t50)50. Because
grains are at rest before the experiment begins, a sec
initial condition isv(x.0,t50)50.

In order to describe the dynamics of grains, we first wr
the momentum conservation law for a grain slice loca
betweenx and x1dx. Two forces act on the slice: a soli
friction force and pressure forces~gravity being neglected!.
The pressure forces act on the two vertical sides of the s
and their sum is equal to

pR2@p~x,t !2p~x1dx,t !#,

whereR is the cylinder radius. When the slice is moving, t
dynamic friction force of grains on the cylinder sides has
magnitude equal tom f p , where f p is the pressure force ex
erted by the grain slice on the container sides andm is a
friction coefficient assumed to be independent of the sp
v. Moreover, we assume that this coefficient is equal to
static friction coefficient of Sec. II. Introducing a new dy
namic friction coefficient is easy, but would make our equ
tions more complicated and would not qualitatively chan
our predictions. The pressure forcef p is equal to
2pRdxKp, where the constantK reflects the pressure an
isotropy of the granular medium~see Sec. II!. Since grains
are pushed towards the positivex direction,v is positive and
the sign of the friction force is negative. The dynamic fri
tion force acting on the slice is thus equal to

2m2pRdxKp.

If the slice is at rest, the friction force becomes static, a
can take any value between2m2pRdxKp and
1m2pRdxKp. The consequences of this nonlinear behav
of the friction force will be studied in detail below.

According to the momentum conservation law, in t
elastic approximation~see below! and when the slice is mov
ing, we have

pR2dxr
]v
]t

52pR2dx
]p

]x
22pRdxmKp,

where r is the grain density, assumed to be constant.
dividing the above equation bypR2dx, we get

r
]v
]t

52
]p

]x
2
p

l
, ~5!

t
r.
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wherel is given byl5R/(2mK) as in Sec. II. Note that Eq
~5! is also valid for a grain slice before it starts to move:
this casep50 and there is no friction between the slice a
the wall.

Another differential equation comes from the assumpt
that the granular medium under pressure has an elastic
sponse. A grain slice of initial volumeV will have a smaller
volumeV1DV for p.0 with DV given by

p

Ẽ
5S 2

DV

V Dm, ~6!

where the elastic modulusẼ and the exponentm are as-
sumed to be constant. This elastic model is valid if two co
ditions are fulfilled: First, the grains must be sufficient
packed before we impose the pressure step so that we
neglect the special behaviors displayed by granular mate
when the grains are barely touching@3#. Secondly, att>0,
we must keepuDVu!V, i.e., p!Ẽ; this will be the case in
the solution obtained in Sec. IV. The exact value of the
ponentm appearing in Eq.~6! has been the subject of man
studies. By assuming that the grain surface is smooth
that the contacts between grains are Hertzian, one obt
m53/2 @18#. Yet experiments@19# have shown that a bette
exponent to fit the data ism52. Various theoretical expla
nations for this value have been proposed recently@18,20#.
Since our aim in the present paper is to study the influenc
wall friction on the acoustic response of the material, we w
make the simplest choice,m51. By differentiating Eq.~6!
~written for a thin grain slice of thicknessdx) with respect to
time, we get another differential equation describing
grain dynamics,

]v
]x

52
1

Ẽ

]p

]t
. ~7!

To summarize, our model leads to two coupled differen
equations ~7! and ~5!, along with the initial conditions
p(x.0,t50)50 and v(x.0,t50)50, and the boundary
condition p(x50,t>0)5p0. Note that in the absence o
wall friction (1/l50), Eq. ~5! reduces to r]v/]t
52]p/]x. By combining this expression and Eq.~7!, we
obtain

r
]2p

]t2
5Ẽ

]2p

]x2
.

The solutions of this equation are simple acoustic wa
propagating at the speed of soundc5(Ẽ/r)1/2. The fact that
the speed of sound is a constant is a direct consequenc
the linear assumption (m51) in Eq. ~6!. In the granular
medium undergoing the pressure stepp0, the pressure fron
propagates at speedc with a constant amplitude; grain
ahead of the front are at rest; the pressure in the grains
hind the front is constant and equal top0, and these grains
move at a uniform and constant speed. As we shall see
introduction of friction significantly complicates the resol
tion of the problem, and leads to new phenomena.
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B. Orders of magnitude of the physical phenomena

Equations~7! and ~5!, along with their initial and bound-
ary conditions, will be analytically solved in Sec. IV. Let u
first show that it is possible to determinea priori most of the
orders of magnitude of the physical phenomena. Equati
~7! and~5!, as well as the initial conditions and the bounda
condition, depend on the four physical paramet
r, c, l, andp0. We can thus define four dimensionle
quantities

x*5
x

l
, t*5

c

l
t, p*5

p

p0
, and v*5

rc

p0
v.

If we rewrite Eqs.~7! and ~5! in terms of the above dimen
sionless quantities, we get

]v*

]t*
52

]p*

]x*
2p*

and

]v*

]x*
52

]p*

]t*
,

along with the initial conditionsp* (x*.0,t*50)50 and
v* (x*.0,t*50)50, and the boundary condition
p* (x*50,t*>0)51. These dimensionless equations a
conditions define a new problem that does not depend on
physical parameter any more. Any quantity of the solution
this dimensionless problem must be of the order of 1,
cause the only constraint is the boundary condit
p* (x*50,t*>0)51. Moreover, the solution of the mode
with dimensions can be found easily from the solution of t
dimensionless problem. For instance, the pressurep(x,t) is
given by p(x,t)5p0p* (x/l,tc/l). Hence the orders o
magnitude of the physical quantities in the model with
mensions are the following ones. The order of magnitude
the pressure isp;p0, the order of magnitude of the grai
speed isv;p0 /rc, the order of magnitude of the distance o
which p andv vary is x;l, the order of magnitude of the
time during whichp and v vary is t;l/c, and finally the
order of magnitude of the displacement of a grain slice
D l;vt;lp0 /rc

2.
For usual granular materials, the orders of magnitude

r and c are given byr;23103 kg/m3 and c;53102

m/s @19,21#. Moreover,l is of the order of 5R since l
5R/(2mK) and the order of magnitude ofmK is 0.1 ~cf.
Sec. II!. As shown later, one has to chooseR in the range
1210 cm for practical reasons. So the order of magnitude
l is also determined:l;0.1 m. The order of magnitude o
the time of variation is then given byt;0.2 ms. The ampli-
tude p0 of the pressure step can be varied within a wi
range, however. One has to keepp0!Ẽ5rc2;108 Pa, and
p0 must be larger than a minimum value: the magnitude
the friction force was determined because grains were m
ing. This is the case provided that the minimum grain d
placementD lmin is larger than the typical size of microscop
contacts between solids or grains, i.e., a few microme
@22#. Hence the condition
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55 5763PROPAGATION OF A PRESSURE STEP INA . . .
D lmin;
lpmin
rc2

.5 mm.

The analytical solution of our model~Sec. IV! will show that
pmin;p0 /50. So we must havep0.10 atm. A good choice
is p0;10–20 atm: it fulfills the above two inequalities, an
should be easily feasible in practice. The order of magnit
of the grain speed is thenv;1 m/s, and the order of mag
nitude of the displacement of a slice under the pressurep0 is
D l;0.3 mm. Grain motions along thex axis are small and
probably difficult to measure. Measurements should focus
the propagation of the pressure step, created, for instanc
the quick opening of a pressurized gas bottle. Fast cap
should measure pressure on the outside cylinder surf
along a distance of 0.5–1 m@23#.

IV. ANALYTICAL RESOLUTION—PROPAGATION
OF A PRESSURE FRONT

A. Analytical resolution

In this subsection we shall analytically calculate the pr
surep and the speedv of grains in a semi-infinite cylinde
on which we impose a pressure step atx50 and t50; we
shall solve the two partial differential equations~7! and ~5!.
We shall first determine the functionp(x,t), and then
v(x,t) will easily be calculated by using Eq.~7!. Combining
Eqs.~7! and ~5! leads to

1

c2
]2p

]t2
2

]2p

]x2
2
1

l

]p

]x
50, ~8!

where c5(Ẽ/r)1/2. Moreover, p(x,t) must satisfy the
boundary condition

p~x50,t>0!5p0 , ~9!

and the following two initial conditions:

p~x.0,t50!50, ~10!

]p

]t
~x.0,t50!50. ~11!

The initial condition~11! results from Eq.~7! and the condi-
tion v(x.0,t50)50. The resolution of the differentia
equation~8! with the three conditions~9!–~11! will be called
problem~P!.

Note that our central equation~8! is somewhat different
from the well-known telegraphist’s equation@24#, in which
the term]p/]x is replaced by]p/]t.

In order to solve problem~P!, we will proceed in three
successive steps. By using the Green function method,
will calculate the behavior of grains under an applied ext
nal excitation. In a second step, this behavior will allow us
solve the Cauchy problem for the pressure inside a gran
medium in an infinite cylinder. The last step will be to sol
problem ~P! by using the solution of the Cauchy problem
We will not explain all the mathematical details of our ca
culations. We use standard methods of mathematical p
ics; rigorous explanations can be found in Refs.@24,25#. We
e
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will mostly try to emphasize the physical meaning of t
methods we use; detailed mathematical calculations are
sented in Appendixes A–C.

1. Response to an external excitation

As a first step towards the resolution of problem~P!, let us
study the response to an external excitation of grains in
infinite cylinder ~i.e., a cylinder extended in both positiv
and negativex directions!. The external excitation is as fol
lows: let us assume that on a grain slice of thicknessdx and
at positionx, we can exert an external forcef (x,t)dx at time
t. We assume that fort,0 the forcef (x,t) is equal to zero;
therefore the grains are at rest~for t,0) and pA(x,t,0)
50. The pressure in the material is denoted bypA for rea-
sons that will soon become clear. Because of the exte
force for t>0, grains start to move and pressure chang
The momentum conservation law, which led to Eq.~5!, now
yields

r
]v
]t

52
]pA
]x

2
pA
l

1
f

pR2 .

Equation~8! then becomes

1

c2
]2pA
]t2

2
]2pA
]x2

2
1

l

]pA
]x

5A, ~12!

whereA(x,t)52(1/pR2)] f /]x is called the external exci
tation. We want to calculatepA(x,t) as a function of
A(x,t). Since Eq.~12! is a linear equation with constan
coefficients, its solutionpA is given by@25#

pA~x,t !5A~x,t !*G~x,t !,

where the symbol* denotes a convolution product; the fun
tion G(x,t) is called the Green function of Eq.~8!. If the
excitation were proportional to an impulsive force atx50
andt50, i.e.,A(x,t)5ad(x)d(t) whered is the Dirac delta
function anda an arbitrary constant used so thatA has the
correct dimension, then the pressure would be

pA~x,t !5@ad~x!d~ t !#*G~x,t !5aG~x,t !.

The Green functionG(x,t) is thus proportional to the pres
sure in the grains when we apply an impulsive force to
material. The calculation of this pressure can be done b
Fourier transform with respect tox. This calculation is pre-
sented in Appendix A. We find that the Green function
Eq. ~8! is given by

G~x,t !5
c

2
u~ct2uxu!expS 2

x

2l D J0SAc2t22x2

2l D ,
whereJ0 is a Bessel function of the first kind@26#, andu the
Heaviside unit step function. Note that since the Bessel fu
tion J0 is oscillatory, the Green functionG(x,t) takes both
positive and negative values. However, as we shall see
~in Sec. V!, the physical solutionp(x,t) of problem ~P! is
always positive~as it should be in a noncohesive granu
material!.
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2. The Cauchy problem for the pressure

In a second step towards the resolution of problem~P!, let
us solve the Cauchy problem for the pressurepC in an infi-
nite cylinder filled with grains, by using the Green functio
G. We consider that at timet50, we knowpC(x,t50) and
its first derivative with respect to time, (]pC /]t)(x,t50).
We want to calculatepC(x,t) for t>0, assuming that for
t>0 there is no external excitation;pC(x,t) is then a solu-
tion of Eq. ~8!. This calculation can be done by using th
grain response to an external excitation, determined in
preceding paragraph. We are going to show that we can
an excitationA(x,t) which is equal to zero whentÞ0 but
is singular fort50, so that the solutionpA(x,t) of the ex-
ternal excitation problem will verify the following condi
tions: ~i! for t,0, A50, the grains are at rest an
pA(x,t)50; ~ii ! at t50, the excitationA changes instanta
neously the state of the grains from rest to a state chara
ized by the initial conditions of the Cauchy problem
i.e., pA(x,t501)5pC(x,t501) and (]pA /]x)(x,t501)
5(]pC /]x)(x,t501); and ~iii ! for t.0, pA(x,t)
5pC(x,t) ~indeed, sinceA50, both pressures verify th
same differential equation!.

If we can find such an excitationA, the solution of the
Cauchy problem fort.0 will be equal to the solution of the
external excitation problem, which can be calculated b
convolution product.

Let us determine the excitationA(x,t). We must have

pA~x,t !5u~ t !pC~x,t !,
e
d

er-

a

where pA is a solution of Eq.~12! which includesA, and
pC is a solution of Eq.~8! which does not include any exci
tation. The last equation yields

S 1c2 ]2

]t2
2

]2

]x2
2
1

l

]

]xD pA
5u~ t !S 1c2 ]2

]t2
2

]2

]x2
2
1

l

]

]xD pC1
1

c2
d~ t !

]pC
]t

~x,t50!

1
1

c2
d8~ t !pC~x,t50!.

SincepC is a solution of Eq.~8!, we simply get

S 1c2 ]2

]t2
2

]2

]x2
2
1

l

]

]xD pA
5
1

c2Fd~ t !
]pC
]t

~x,t50!1d8~ t !pC~x,t50!G .
Hence the singular excitation we want to determine is giv
by

A~x,t !5
1

c2Fd~ t !
]pC
]t

~x,t50!1d8~ t !pC~x,t50!G .
The solution of the Cauchy problem fort>0 is equal to the
convolution product ofA by the Green functionG(x,t) cal-
culated in the preceding paragraph,
lem is

y

st
pC~x,t>0!5A~x,t !*G~x,t !5
1

c2Fd~ t !
]pC
]t

~x,t50!1d8~ t !pC~x,t50!G* F c2 u~ct2uxu!expS 2
x

2l D J0SAc2t22x2

2l D G .
The calculation of this convolution product is presented in Appendix B. We find that the solution of the Cauchy prob
given by

pC~x,t>0!5
1

2cEx2ct

x1ct

dx8
]pC
]t

~x8,0!expS x82x

2l D J0SAc2t22~x82x!2

2l D
2

ct

4lEx2ct

x1ct

dx8pC~x8,0!expS x82x

2l D J1~ ~1/2l!Ac2t22~x82x!2!
Ac2t22~x82x!2

1
1

2FpC~x1ct,0!expS ct2l D1pC~x2ct,0!expS 2
ct

2l D G , ~13!

whereJ1 is a Bessel function of the first kind@26#.

3. The analytical solution of problem (P)

We are now able to determine the pressurep(x,t) that is the solution of problem~P!, by using the solution of the Cauch
problem calculated in the preceding paragraph. Any particular choice forpC(x,t50) and (]pC /]t)(x,t50) ~wherex<0 and
x>0) generates a solutionpC(x,t) of Eq. ~8!, the differential equation of problem~P!. For problem~P!, let us look for a
solutionp(x,t) of the following kind:p(x,t)5k1pC(x,t), wherek is a constant.p andpC will be mathematically defined for
x both positive and negative, but only the partx>0 of the functionp will have a physical meaning in our model. We mu
determine the two functionspC(x,t50), (]pC /]t)(x,t50), and the constantk in order thatp(x,t) fulfills the boundary
condition and the initial conditions of problem~P!. Let us first consider the boundary condition: atx50, the pressure
pC(x,t) of any solution of the Cauchy problem can be written
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pC~x50,t !5
1

2FpC~ct,0!expS ct2l D1pC~2ct,0!expS 2
ct

2l D G1
1

2cE0
ct

dx8F]pC]t
~x8,0!expS x82l D1

]pC
]t

~2x8,0!

3expS2x8

2l D GJ0SAc2t22x82

2l D2 ct

4lE0
ct

dx8FpC~x8,0!expS x82l D1pC~2x8,0!expS 2
x8

2l D GJ1„~1/2l!Ac2t22x82…

Ac2t22x82
.
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If we impose that

pC~x,t50!expS x

2l D1pC~2x,t50!expS 2
x

2l D50,

~14!

and that

]pC
]t

~x,t50!expS x

2l D1
]pC
]t

~2x,t50!expS 2
x

2l D50,

~15!

then we getpC(x50,t)50. In addition, we takek5p0, and
the boundary conditionp(x50,t>0)5p0 is fulfilled.
We still have to choose the functionspC(x,t50) and
(]pC /]t)(x,t50) for x.0; the conditions~14! and~15! will
then determine these functions forx,0.

Now let us consider the two initial conditions. The fir
condition p(x.0,t50)50 is fulfilled if we choose
pC(x.0,t50)5p(x.0,t50)2p052p0; then Eq.~14! im-
poses thatpC(x,0,t50)51p0exp(2x/l). The second ini-
tial condition (]p/]t)(x.0,t50)50 is fulfilled if we
choose (]pC /]t)(x.0,t50)5(]p/]t)(x.0,t50)50, and
then Eq.~15! imposes that (]pC /]t)(x,0,t50)50. The so-
lution p(x,t) of problem~P! is then given by

p~x,t>0!5p01
1

2FpC~x1ct,0!expS ct2l D1pC~x2ct,0!

3expS 2
ct

2l D G2
ct

4lEx2ct

x1ct

dx8pC~x8,0!

3expS x82x

2l D J1„~1/2l!Ac2t22~x82x!2…

Ac2t22~x82x!2
,

~16!

where

pC~x,0!5H p0expS 2
x

l D if x,0

2p0 if x.0.

We have verified the validity of the above calculatio
by comparing the analytical solution~16! with a direct
numerical integration of problem~P!. This numerical inte-
gration was done—starting from Eqs.~7! and ~5!—by using
a finite difference method, with a Lax-Wendroff algorith
@27,28#. Note that this numerical scheme does not rely
the Green function method used to obtain Eq.~16!. The
n

agreement found between the numerical integration and
analytical solution is very good~the difference being less
than1%).

B. Propagation of a pressure front

The solution~13! of the Cauchy problem shows that th
pressure at positionx and timet is determined by the pres
sure and pressure time derivative at all pointsx8 located
betweenx2ct and x1ct at time t850. The pressure at a
point x and timet cannot be influenced by the pressure a
its derivative at another point (x8,t8) if this second point is
‘‘outside the light cone’’ of the first one, i.e., i
ux2x8u.cut2t8u. Hence, for a pressure step imposed
x50 andt50 in a semi-infinite cylinder, we have

pS x,t,x

cD50.

This result can be checked directly by using expression~16!.
Moreover, for t>x/c it is possible to simplify expression
~16! further. Calculations are presented in Appendix C, a
lead to

pS x,t> x

cD5p0expS 2
x

2l D FcoshS ct2x

2l D2
ct

2l

3E
x/ct

1

dzcoshS zct2x

2l D J1„~ct/2l!A12z2…

A12z2
G .

~17!

This expression shows thatp(x,t5x/c)5p0exp(2x/2l): a
pressure front is generated by the step we impose atx50,
and propagates in the positivex direction at the speed o
soundc. When the front arrives at a given pointx, the pres-
sure jumps from 0 top0exp(2x/2l). Hence, despite the grai
friction on the cylinder sides, we predict that a pressure d
continuity propagates at speedc, as in the frictionless case
(1/l50); the effect of friction on the front is to exponen
tially damp the pressure discontinuity. Note that the dynam
damping length 2l at the front is larger than the static dam
ing lengthl of the Janssen model~cf. Sec. II!. Since pres-
sure is not continuous atx5ct, we must distinguish betwee
the point of abscissax5ct2 just behind the front where
p(x5ct2,t)5p0exp(2x/2l), and the point of absciss
x5ct1 just ahead of the front wherep(x5ct1,t)50.
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Let us show that the pressure front corresponds also
discontinuity in the grain velocity. The velocity can be ca
culated directly from Eq.~7!,

v~x,t !52
1

rc2 È
x]p

]t
~x8,t !dx8

5
1

rc2Exct
1]p

]t
~x8,t !dx8

5
1

rc
p~x85ct2,t !1

1

rc2Exct
2]p

]t
~x8,t !dx8

5
p0
rc

expS 2
ct

2l D1
1

rc2Exct
2]p

]t
~x8,t !dx8. ~18!

When the front arrives, the velocity jumps from
v(x5ct1,t)50 to v(x5ct2,t)5(p0 /rc)exp(2x/2l).
Moreover, numerical integrations of expressions~17! and
~18! show that at a given point of abscissax, pressure and
velocity decrease with a characteristic time of a fewl/c
after the jumps occurring att5x/c. This behavior is shown
in Figs. 3 and 4, where pressure and speed are plotted ag
the abscissax for t5l/c, 2l/c, and 4l/c.

V. PROPAGATION OF A STOPPING FRONT

Figure 4 shows that according to the analytical solut
~17!, the velocity atx50 becomes negative fort larger than
;3l/c. A precise numerical calculation shows that this
fect starts atts53.25l/c. For t.ts , the velocity is negative
betweenx50 and a point wherev50. We will call the
abscissa of this pointxs(t); Fig. 4 shows that, for instance
xs(t54l/c)'1.9l. The grains atx.xs(t) still have a posi-
tive speed. The pointxs has a positive velocity, i.e., the re
gion wherev,0 expands. However, this description cann
be valid, because in our equations we had assumed tha
grains had a positive velocity: in Eq.~5!, the term2p/l
represents the force acting on grains due to their friction
the cylinder sides~cf. Sec. III!. This term is negative becaus
friction and velocity always have opposite directions, and

FIG. 3. Dimensionless pressurep*5p(x,t)/p0, solution of Eqs.
~5! and~7!, as a function of the dimensionless abscissax*5x/l, at
three different times:t5l/c ~short dashed curve!, t52l/c ~solid
curve!, andt54l/c ~long dashed curve!. The discontinuities at the
right ends of the curves correspond to the pressure front.
a

inst

n

-

t
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e

assumed thatv.0. The analytical solution that we foun
contradicts this assumption fort.ts . Our model and its ana
lytical solution are valid everywhere in the granular mater
for t,ts , and only in the part of the granular material
which v.0 for t.ts . Elsewhere, they must be modified.

In order to understand what happens in the part of
granular material in whichv,0, we must analyze more pre
cisely the role of friction forces. When a grain slice sto
(v50) at x5xs(t), the friction applied on the slice by th
cylinder is not dynamic any more, but becomes static. T
solid friction laws do not determine the magnitude of th
static friction force, but only require that it is inferior to th
magnitude the force would have if the slice were moving

u f statu<
p

l
, ~19!

where f stat is equal to the static friction force divided by th
volume of the grain slice.f stat can be calculated with the
momentum conservation law. If condition~19! is fulfilled,
the slice that stopped stays at rest; if Eq.~19! is not fulfilled,
the static friction force needed to maintain the slice at res
too large, and the slice motion must start again. To se
friction is sufficient to maintain the grain slices at rest, w
calculate the magnitude of the static friction atx,xs , as-
suming that grains definitively stop when the pointxs(t) ar-
rives @hypothesis~H!#, and then we check if this magnitud
verifies Eq.~19!. If a grain slice definitively stops at a tim
t0, its pressure will not change any more att.t0 and will
keep the value it had att0. This allows us to calculate the
pressureps(x) of the grains that have stopped, by using t
analytical solution~17!. The functionps(x) is represented in
Fig. 5 by a solid curve. The magnitude of static friction
then determined by the momentum conservation law@cf. Eq.
~5!#

052
dps
dx

1 f stat. ~20!

FIG. 4. Dimensionless velocityv*5v(x,t)rc/p0, solution of
Eqs. ~5! and ~7!, as a function of the dimensionless abscis
x*5x/l, for three values of the timet: t5l/c ~short dashed
curve!, t52l/c ~solid curve!, andt54l/c ~long dashed curve!. As
in Fig. 3, the sudden drops correspond to the speed discontin
due to the pressure front. At a given abscissa and after the pres
front has passed, the velocity decreases and becomes negat
time increases.
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Hence the condition~19! becomes

Udpsdx U< ps
l
.

Hypothesis~H! is correct if this equation is verified. The
quantityl/psdps /dx is plotted in Fig. 6 as a function ofx;
its value always lies between21 and11. Hence hypothesis
~H! is correct, i.e., grains definitively stop atx5xs(t).

Physically, the pointxs(t) corresponds to a stopping fron
where the grain motion stops definitively, and this fron
propagates to the positivex direction. Grains behind this
front (x,xs) have already stopped, and grains ahead of
(x.xs) are still moving. A grain slice located atx stops at a
time t so thatx5xs(t), or t5ts(x) where ts is the inverse
function ofxs . After the slice has stopped, its pressure do
not change any more, and is equal to

ps~x!5p@x,ts~x!#, ~21!

FIG. 5. Dimensionless final pressure profile when grains ha
stopped,ps*5ps(x)/p0 ~solid curve!, and dimensionless pressure
profile of the Janssen modelpJ*5pJ(x)/p0 ~dashed curve!, as func-
tions of the dimensionless abscissax*5x/l.

FIG. 6. @l/ps(x)#dps(x)/dx as a function of the dimensionless
abscissax*5x/l. This quantity always lies between21 and11,
so that static friction is sufficient to maintain the grain slices at re
after they have stopped.
t

it

s

where p(x,t) is the analytical solution~17!. The function
ps(x) can be numerically calculated using Eq.~21!; this
function is plotted in Fig. 5~solid curve!.

The stopping front starts fromx50 at t5ts(x50)
53.25l/c. Figure 7 shows the pressure front~where grains
start to move! and the stopping front positions as functio
of time. The stopping front tends to catch up with the pre
sure front, but always remains behind it. In Fig. 7 the a
above the two curves corresponds to grains that the pres
front has not reached yet (ct,x); their pressure is equa
to 0. Grains in the area in between the two curv
@xs(t),x,ct# are moving with a positive velocity; thei
pressure is given by the analytical solution~17!. The stop-
ping front has already reached the grains in the part be
the two curves@x,xs(t)#. These grains do not move an
more, and have a pressure equal tops(x). Figure 8 represents
pressure against time at a given abscissax, for x5l, 2l,
and 4l. For each curve the pressure is equal to zero until
pressure front arrives~at t5x/c); it then jumps to
p0exp(2x/2l), decreases during a time lag ofts(x)2x/c,
and stops changing when the stopping front arrives
t5ts(x). These three curves are horizontal sections of Fig
Pressure against the abscissa at a given timet, for
t5l/c, 4l/c, and 5l/c, is plotted in Fig. 9. The pressur
front is at the right end of the curves. These three curves
vertical sections of Fig. 7.

The final pressure of grainsps(x) is plotted in Fig. 5
~solid curve!. Let us compare it with the pressure profi
predicted by the Janssen model described in Sec. II of
present paper. With the boundary conditionp(x50)5p0
and when there is no gravity force, the Janssen model
dicts that pressure is given by@see Eq.~3!#

pJ~x!5p0expS 2
x

l D .
This function is represented by a dashed curve in Fig.

e

t

FIG. 7. Dimensionless abscissa of the pressure fr
xpf*5xpf(t)/l5ct/l ~dashed curve! and of the stopping front
xs*5xs(t)/l ~solid curve!, as functions of the dimensionless tim
t*5tc/l. The grain slices at a place and a time represented b
point above the two curves have not started to move yet; the s
between the curves are moving; the slices below the curves h
already stopped.
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Note thatpJ(x) decreases more quickly than doesps(x), but
qualitatively the two curves are close. The best fit ofps(x)
by an exponential function is

ps~x!'p0expS 2
x

1.3l D .
The characteristic damping length ofps(x), 1.3l, is a bit
larger than the damping length ofpJ(x), l. This comes
from the assumptions made about the static friction of gra
at the cylinder sides: Eq.~20! (dp/dx5 f stat) shows that the
pressure along the cylinder decreases because of this fric
Janssen assumed that this friction was maximum, whe

FIG. 9. Dimensionless pressurep*5p(x,t)/p0, calculated by
taking into account the stopping front, as a function of the dim
sionless abscissax*5x/l, for three values of the timet: t5l/c
~short dashed curve!, t54l/c ~solid curve!, and t55l/c ~long
dashed curve!. The last two curves are identical forx*,2.0 since in
this part of both curves, grains have already stopped: dimension
pressure does not vary any more, and is equal tops* (x). Note the
small break of the slope occurring atx*53.4 in the long dashed
curvet55l/c; this break corresponds to the stopping front. A sim
lar effect~hardly visible in the figure! occurs atx*52.0 in the solid
curve t54l/c.

FIG. 8. Dimensionless pressurep*5p(x,t)/p0, calculated by
taking into account the stopping front, as a function of the dim
sionless timet*5tc/l, for three values of the abscissax: x5l
~short dashed curve!, x52l ~solid curve!, andx54l ~long dashed
curve!. The sudden increases at the left ends of the curves ha
when the pressure front arrives, and the sudden stops of the
crease happen when the stopping front arrives.
s

n.
as

we did not. Hence pressure decreases more quickly in
Janssen model. Despite this small difference of the damp
lengths, our final pressure distribution and the Janssen
are quite similar. This result is a bit surprising since the t
models are different, our model taking into account both d
namic and static frictions. The final pressure distributi
ps(x) cannot be obtained by simply setting]p/]t50 in Eq.
~8!, since the friction term2(1/l)]p/]x is valid only when
the grains are moving. Therefore, even if the functio
pJ(x) andps(x) are close, we emphasize that these two pr
sure distributions are not identical.

VI. CONCLUSION

In order to understand the role of wall friction on acous
propagation in a granular medium, we have modeled
propagation of a pressure step in a cylinder filled with
granular material. In the frictionless case (1/l50), the pres-
sure front would propagate at the speed of sound, and wo
not be damped. All grains behind the front would move a
uniform and constant speed. In the presence of solid frict
between the grains and the cylinder walls, we have sho
that a pressure front still propagates and that its speed is
same as in the frictionless case. Yet its amplitude is ex
nentially damped, and all grain slices move only during
limited time. The grain motion stops when a stopping fro
arrives. This front propagates behind the pressure front
speed is always larger than the speed of soundc, but ap-
proachesc as the stopping front catches up with the press
front. Note that the stopping front is due to friction and do
not exist in the frictionless case (ts tends to infinity as fric-
tion goes to zero!. The final pressure profile of grains that w
predict when they have stopped is similar but not identica
the Janssen one. In all our study, we assumed that the el
response of the material was linear@i.e.,m51 in Eq.~6!#. As
a consequence, the speed of sound in the material w
constant. Our conclusions should not be seriously affecte
nonlinear wave propagation@29# is incorporated. We plan to
study this subject in the future.

In order to neglect reflections of the pressure step on
right end of the cylinder, we assumed that the container w
semi-infinite. Let us assess the minimum length that the c
inder should have in practice. We have shown that the p
sure of a grain slice at positionx was maximal when the
pressure front arrived, and was equal top0exp(2x/2l),
wherel'5R (R being the cylinder radius!. Experimentally,
reflections will be negligible if they happen in an area whe
this maximal pressure is small compared top0. Hence the
cylinder length should exceed;30 times its radius.

Let us end this paper by considering, from a practi
point of view, the filling of a vertical silo~we take into
account the grain weight!. We assume that the granular m
terial is poured with a constant ingoing fluxQ. This situation
is similar to the one represented in Fig. 1, with a grain hei
increasing at a constant speedV5Q/pR2. Let us now take
x50 at the container’s bottom, so that grains are located
2Vt<x<0. Let us try to determinep(x,t) andv(x,t) dur-
ing the filling. The differential equations are

rc2
]v
]x

52
]p

]t
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and

r
]v
]t

52
]p

]x
2
p

l
1rg. ~22!

The only difference with Eqs.~7! and ~5! for the pressure
step propagation in a horizontal cylinder is the gravity te
rg added in Eq.~22!. The friction term2p/l in Eq. ~22! is
again negative since the poured grains are progressi
compressed and we expect a positive velocity. The bound
conditions are nowv(x50,t)50, and p(x52Vt,t)50:
grains that are being poured in the silo at the top of
granular material have a negligible pressure. Determining
exact analytical solution of this model is a difficult mat
ematical problem. We do not expect any more that a st
ping front propagates when the cylinder is filled with a co
stant flux. We propose two different approximations for tw
different regimes: a short time regime when the filling sta
(t,l/V), and a long time regime (t.l/V). In both regimes,
the expressions ofp andv will be simplified, assuming tha
V!c.

~i! In the short time regime (t,l/V), the grain height in
the cylinder is smaller than the characteristic damping len
l of friction, and we can neglect the friction term2p/l in
Eq. ~22!. It is then easy to obtain

pS x,t,l

VD5rg~x1Vt!,

vS x,t,l

VD5
gV

c2
~2x!.

The pressure is the same as in a liquid at rest. The speed
not depend on timet, provided thatt,l/V. Note that as
expected, we havev.0 sincex is negative.

~ii ! In the long time regime (t.l/V) and in the frame
moving up at the velocityV with respect to the silo frame
we expect that bothp and v hardly depend on time, espe
cially in the upper part of the granular material. So in the s
frame we can try to find a solution of the following kind
p(x,t)5p(x1Vt), and v(x,t)5v(x1Vt). Using the two
partial differential equations and the boundary conditio
we get

pS x,t.l

VD5rglF12expS 2
x1Vt

l D G ,
vS x,t.l

VD5
gV

c2
lexpS 2

x1Vt

l D .
The pressurep is a Janssen pressure distribution, shifted
at the constant velocityV as the upper grain surfac
(x52Vt). Note that this expression for the velocity do
not exactly satisfy the boundary conditionv(x50,t)50, but
tends to satisfy it in the very long time limit.

What happens when we stop the ingoing fluxQ at a time
t0 after having poured a given height of grains? Work is s
in progress in order to determinep(x,t.t0) and
v(x,t.t0). We expect that as the speed progressively te
ly
ry

e
e

p-
-

s

th

oes

,

p

l

s

to zero, the grain compression goes on and the pressu
the granular medium increases.
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APPENDIX A: GREEN’S FUNCTION

We shall determine the Green function of the linear d
ferential operator

L5
1

c2
]2

]t2
2

]2

]x2
2
1

l

]

]x
,

using standard methods of mathematical physics@24,25#.
The Green functionG(x,t) must satisfy the equation

LG5d~x!d~ t !, ~A1!

where d is the Dirac delta function. Let us define a ne
functionF(x,t) as

F~x,t !5expS x

2l DG~x,t !.

For F(x,t), the differential equation~A1! becomes

S 1c2 ]2

]t2
2

]2

]x2
1

1

4l2DF~x,t !5d~x!d~ t !.

The Fourier transformF̂(k,t)5*2`
1`dxexp(2ikx)F(x,t) satis-

fies

1

c2
]2F̂

]t2
1S k21 1

4l2D F̂5d~ t !. ~A2!

The most general solution of the corresponding homo
neous equation

1

c2
]2F̂0

]t2
1S k21 1

4l2D F̂050

is equal to

F̂0~k,t !5a1~k!sinSAk21
1

4l2ctD
1a2~k!cosSAk21

1

4l2ctD ,
wherea1(k) anda2(k) are arbitrary functions. A particula
solution of Eq.~A2! is given by

F̂part5u~ t !F̂0 ,
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where u is the Heaviside unit step function. We find th
F̂part is a solution of Eq.~A2! whena1 anda2 are given by

a1~k!5
c

Ak211/4l2
and a2~k!50.

The solution of Eq.~A2! which fulfills the causality condi-
tion is then given by
F̂~k,t !5
c

Ak211/4l2
u~ t !sinSAk21

1

4l2ctD .
Returning to real space, we obtain

F~x,t!5
c

2
u~ct2uxu!J0SAc2t22x2

2l D ,
whereJ0 is a Bessel function of the first kind@26#. Indeed it
is easy to verify that
E
2`

1`

dxexp~2 ikx!
c

2
u~ct2uxu!J0SAc2t22x2

2l D 5
c

2
u~ t !E

2ct

1ct

dxexp~2 ikx!J0SAc2t22x2

2l D
5cu~ t !E

0

ct

dxcos~kx!J0SAc2t22x2

2l D 5cu~ t !
sin~Ak211/4l2ct!

Ak211/4l2
.

See Ref.@30# for the last step. In conclusion, for the linear differential operatorL, the Green function is given by

G~x,t !5
c

2
u~ct2uxu!expS 2

x

2l D J0SAc2t22x2

2l D .
APPENDIX B: SOLUTION OF THE CAUCHY PROBLEM

Let us consider the differential equation

1

c2
]2pC
]t2

2
]2pC
]x2

2
1

l

]pC
]x

50.

We assume we knowpC(x,t50) and (]pC /]t)(x,t50), and we want to determinepC(x,t>0) ~i.e., we want to solve the
Cauchy problem for this differential equation!. We have shown that the solution is equal to the convolution product

pC~x,t>0!5A~x,t !*G~x,t !,

where

A~x,t !5
1

c2Fd~ t !
]pC
]t

~x,t50!1d8~ t !pC~x,t50!G ,
G~x,t !5

c

2
u~ct2uxu!expS 2

x

2l D J0SAc2t22x2

2l D .
We shall calculate this convolution product. In order to shorten the mathematical expressions, we shall defineu0(x) and
u1(x) by

u0~x!5
1

c2
pC~x,t50! and u1~x!5

1

c2
]pC
]t

~x,t50!.

Let us calculate the first partP1 of the convolution product

P15@d~ t !u1~x!#*G~x,t !5E
2`

1`

dx8E
2`

1`

dt8d~ t8!u1~x8!G~x2x8,t2t8!

5
c

2E2`

1`

dx8u1~x8! u~ct2ux2x8u!expS 2
x2x8

2l D J0SAc2t22~x2x8!2

2l D
5
c

2
u~ t !E

x2ct

x1ct

dx8u1~x8!expS x82x

2l D J0SAc2t22~x82x!2

2l D .
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The second partP2 of the convolution product is equal to

P25@d8~ t !u0~x!#*G~x,t !5E
2`

1`

dx8E
2`

1`

dt8d8~ t2t8!u0~x2x8!G~x8,t8!5
]

]t
$@d~ t !u0~x!#*G~x,t !%.

By using the expression ofP1, we obtain

P25
]

]tH c2 u~ t !E
x2ct

x1ct

dx8u0~x8!expS x82x

2l D J0SAc2t22~x82x!2

2l D J
52

c

2
u~ t !E

x2ct

x1ct

dx8u0~x8!expS x82x

2l D c2t2l

J1„~1/2l!Ac2t22~x82x!2…

Ac2t22~x82x!2

1
c2

2
u~ t !Fu0~x1ct!expS ct2l D1u0~x2ct!expS 2

ct

2l D G .
To derive the last expression, we used the formula

J0~0!51 and J08~x!52J1~x!,

whereJ1(x) is a Bessel function of the first kind@26#. The solution of the Cauchy problem is finally given by

pC~x,t>0!5
1

2cEx2ct

x1ct

dx8
]pC
]t

~x8,0!expS x82x

2l D J0SAc2t22~x82x!2

2l D 2
ct

4lEx2ct

x1ct

dx8pC~x8,0!

3expS x82x

2l D J1„~1/2l!Ac2t22~x82x!2…

Ac2t22~x82x!2
1
1

2FpC~x1ct,0!expS ct2l D1pC~x2ct,0!expS 2
ct

2l D G .
APPENDIX C: A SIMPLE EXPRESSION FOR THE PRESSURE

In our water hammer model for a granular material, the grain pressure is given by

p~x,t>0!5p01
1

2FpC~x1ct,0!expS ct2l D1pC~x2ct,0!expS 2
ct

2l D G
2

ct

4lEx2ct

x1ct

dx8pC~x8,0!expS x82x

2l D J1„~1/2l!Ac2t22~x82x!2…

Ac2t22~x82x!2
,

where

pC~x,0!5H p0expS 2
x

l D if x,0

2p0 if x.0.

We shall simplify this expression fort>x/c,

pS x,t> x

cD5p01
p0
2 F2expS ct2l D1expS ct2x

l DexpS 2
ct

2l D G2
ct

4lE2ct

1ct

dx8pC~x81x,0!expS x82l D J1„~1/2l!Ac2t22x82…

Ac2t22x82

5p0H 11
1

2
expS ct2l D FexpS 2

x

l D21G J 2p0
ct

4lF E
2ct

2x

dx8expS 2
x81x

l DexpS x82l D J1„~1/2l!Ac2t22x82…

Ac2t22x82

2E
2x

ct

dx8expS x82l D J1„~1/2l!Ac2t22x82…

Ac2t22x82
G . ~C1!

In order to shorten the mathematical expressions, we define the following dimensionless quantities:

t5
ct

2l
, x5

x

2l
, and x85

x8

2l
.
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Then the equality~C1! can be rewritten

p~x,t>x!

p0
511

exp~t!

2
@exp~22x!21#2

t

2F E2t

2x

dx8exp~22x2x8!
J1~At22x82!

At22x82
2E

2x

2t

dx8exp~x8!
J1~At22x82!

At22x82

2E
2t

1t

dx8exp~x8!
J1~At22x82!

At22x82
G

511
exp~t!

2
@exp~22x!21#2

t

2E2t

2x

dx8exp~2x!@exp~x1x8!1exp~2x2x8!#
J1~At22x82!

At22x82

1
t

2E2t

1t

dx8exp~x8!
J1~At22x82!

At22x82
.

s

s

The last expression ofp/p0 is a sum of three terms. Let u
call them successivelyT1 , T2, andT3. Let us first simplify
the termT2,

T252tE
2t

2x

dx8exp~2x!cosh~x1x8!
J1~At22x82!

At22x82

52texp~2x!E
x/t

1

dzcosh~zt2x!
J1~tA12z2!

A12z2
.

Then the termT3 is equal to

T35
t

2E2t

1t

dx8exp~x8!
J1~At22x82!

At22x82

5tE
0

t

dx8cosh~x8!
J1~At22x82!

At22x82

5cosh~t!21.

See Ref.@30# for the last derivation. The sum of the term
T1 andT3 is
s

e

ar
T11T3511
exp~t!

2
@exp~22x!21#1cosh~t!21

5exp~2x!cosh~t2x!.

Hencep(x,t>x) is given by

p~x,t>x!5p0exp~2x!Fcosh~t2x!

2tE
x/t

1

dzcosh~zt2x!
J1~tA12z2!

A12z2
G .

Using the quantities with dimensions,p(x,t>x/c) is finally
given by

pS x,t> x

cD5p0expS 2
x

2l D FcoshS ct2x

2l D2
ct

2l

3E
x/ct

1

dzcoshS zct2x

2l D J1„~ct/2l!A12z2…

A12z2
G .
al
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