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Roughening transition in a moving contact line
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The dynamics of the deformations of a moving contact line on a disordered substrate is formulated, taking
into account both local and hydrodynamic dissipation mechanisms. It is shown that both the coating transition
in contact lines receding at relatively high velocities and the pinning transition for slowly moving contact lines
can be understood in a unified framework as roughening transitions in the contact line. We propose a phase
diagram for the system in which the phase boundaries corresponding to the coating transition and the pinning
transition meet at ajunctionpoint, and suggest that for sufficiently strong disorder a receding contact line will
leave a Landau-Levich film immediately after depinning.
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I. INTRODUCTION

When a drop of liquid spreads on a solid surface,
contact line, which is the common borderline between t
solid, the liquid, and the corresponding equilibrium vap
undergoes a rather complex dynamical behavior. This
namics is determined by a subtle competition between
mutual interfacial energetics of the three phases, dissipa
and hydrodynamic flows in the liquid, and the geometrica
chemical irregularities of the solid surface@1#.

For a partially wetting fluid on sufficiently smooth sub
strates, a contact line at equilibrium has a well defined c
tact angleue that is determined by the solid-vaporgSV and
the solid-liquidgSL interfacial energies, and the liquid su
face tension g through Young’s relation: gSV2gSL
5g cosue. For a moving contact line, however, the value
the so-called dynamic contact angleu changes as a functio
of velocity: u.ue for an advancing contact line andu,ue
for a receding one. This is because the unbalanced interfa
forcegSV2gSL2g cosu now has to be balanced with a fric
tional force in a steady state situation. The dissipation in
moving contact line, which is responsible for the friction, c
be either oflocal origin, for example, due to microscopi
jumps of single molecules~from the liquid into the vapor! in
the immediate vicinity of the contact line@2,3#, or due to
viscoushydrodynamiclosses inside the moving liquid wedg
@1,4–7#.

For a contact line that is receding at a velocityv, it has
been shown by de Gennes@6# that a steady state is achieve
in which the liquid will partially wet the plate with a nonva
nishing dynamic contact angleu, only for velocities less than
a certain critical value. The dynamic contact angle decrea
with increasingv, until at the critical velocity the system
undergoes a dynamical phase transition in which a ma
scopic Landau-Levich liquid film@8,9#, formally correspond-
ing to a vanishingu, will remain on the plate. One can thin
of the dynamic contact angle as the order parameter cha
terizing thiscoating transition, in analogy with equilibrium
phase transitions, while velocity is playing the role of t
tuning parameter. Elaborating further on this analogy th
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seems to suggest that the nature of the coating trans
depends crucially on the dominant dissipation mechanism
the local picture,u vanishes continuously asv approaches
the critical velocity, which makes it look like asecond-order
phase transition, while on the contrary, in the hydrodynam
picture a jump is predicted inu from ue /A3 to zero at the
transition, which is the signature of afirst-order phase tran-
sition @6#.

Another notable feature of contact lines, which is respo
sible for their novel dynamics, is their anomalous lon
ranged elasticity@10#. For length scales below the capillar
length ~which is of the order of 3 mm for water at room
temperature!, a contact line deformation of wave vectork
will distort the surface of the liquid over a distanceuku21.
Assuming that the surface deforms instantaneously in
sponse to the contact line distortions, the elastic energy
for the deformation can be calculated from the surface t
sion energy stored in the distorted area, and is thus pro
tional to uku. The anomalous elasticity leads to interesti
equilibrium dynamics, corresponding to when the cont
line is perturbed from its static position, as studied by
Gennes@11#. Balancing the rate of interfacial energy chan
and the dissipation, which he assumed for small con
angles is dominated by the hydrodynamic dissipation in
liquid near the contact line, he finds that each deformat
mode relaxes to equilibrium with a characteristic~inverse!
decay timet21(k)5cuku, wherec is a characteristicrelax-
ation velocity@11#. The relaxation is thus characterized by
dynamic exponentz, defined via t21(k);ukuz, which is
equal to 1. The linear dispersion relation implies that a
formation in the contact line willdecayand propagateat a
constant velocity, as opposed to systems with normal
tension elasticity, where the decay and the propagation
governed by diffusion. This behavior has been observed,
the linear dispersion relation has been precisely tested
recent experiment by Ondarcuhu and Veyssie@12#.

In reality, the presence of defects and heterogeneitie
the substrate, which could be due to~surface! roughness or
chemical contamination, further complicates the dynamics
a contact line@13,14#. In the presence of such heterogen
©2003 The American Physical Society03-1
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ities, a contact line at equilibrium becomesrough, because it
tries to locally deform so as to find the path with optim
pinningenergy@1#. This is in contrast to the case of a perfe
solid surface, where the contact line isflat. The roughness
can be characterized as a scaling law that relates the sta
cal width W of the contact line to its lengthL, via W;Lz.
The so-called roughness exponentz is equal to 1/3 for a
contact line at equilibrium on a surface with short-range c
related disorder@15–18#. Since the contact line is pinned b
the defects, a nonzero~critical! force is necessary to set
into motion, through adepinningtransition @19–22#. For a
contact line at the depinning threshold, a roughness expo
about 0.4 has been predicted theoretically from two-lo
field theoretical renormalization group calculations@23#, and
numerical simulations@24#, which seems to disagree with th
experimental finding of 0.5 for both liquid helium on a c
sium substrate@25# and water on glass experiments@26#. It is
also important to note that there may be numerous m
stable states for the contact line due to the random disor
leading to hysteresis in the contact angle@10,16#.

Here we study thenonequilibriumdynamics of the defor-
mations of a moving contact line on a disordered subst
@27,28#. The dynamics is governed by a balance betwe
three different forces:~i! the interfacial force,~ii ! the fric-
tional force, which can stem from either local or hydrod
namic dissipation processes, and~iii ! a random force cause
by the disorder. We find that the relaxation spectrum o
moving contact line is the same as the equilibrium case,
the characteristic relaxation velocity depends onv: It de-
creases withv until at the critical velocity corresponding t
the coating transition it vanishes identically. The progr
sively slow relaxation of a distorted contact line near t
coating transition is in agreement with a nucleation picture
the phase transition~see Fig. 1!.

We find that coating transition can be actually understo
in terms of aroughening transitionof the contact line on the
disordered substrate. Since linear relaxation becomes
nitely slow in the vicinity of the coating transition, the dom

FIG. 1. A contact line moving on a disordered substrate und
goes shape fluctuations. The contact line can be locally pinne
the disordered substrate, thereby nucleating domains that are a
with respect to the substrate, with typical sizes given by a corr
tion lengthj. These domains are rough, because they have to
form to the minimum energy configuration on the substrate. At
onset of a roughening transition, this correlation length diverge
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nant relaxation is thus governed by nonlinear terms in
dynamical equation, and the dynamical phase transition
thus be properly accounted for only by using systema
renormalization group~RG! calculations. We find that disor
der favors the coating transition, in the sense that the ons
leaving a Landau-Levich film for a random substrate w
strengthg takes place at a dynamic contact angle,

uc

ue
U

l

5aclS g

gue
2D 1/3

~1!

for local dissipation, and

uc

ue
U

h

5
1

A3
1achS g

gue
2D 2/3

~2!

for hydrodynamic dissipation, to the leading order. (acl and
ach are numerical constants to be defined below.! The value
of the roughness exponent at the transition is found to de
mine the order of the transition. Although we find that th
exponent acquires nonuniversal values, it appears that
predicted nature of the phase transition from the RG ca
lation is in agreement with the mean-field results, i.e., sec
order for the local case and first order for the hydrodynam
case, for sufficiently weak disorder.

We then propose a phase diagram for contact lines w
local dissipation as depicted in Fig. 2, and a correspond
one for contact lines with hydrodynamic dissipation as d
picted in Fig. 3. In particular, we suggest that the pha
boundaries corresponding to the coating transition and
pinning transition meet at a junction pointT, and that for
sufficiently strong disorder a receding contact line will lea
a Landau-Levich film immediately after depinning. This co
responds to the dashed lines in Figs. 2 and 3. Note that
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FIG. 2. The suggested phase diagram of a contact line withlocal
dissipation on a disordered substrate. The asymptotic form for
coating transition line is given in Eq.~1!.
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asymptotic form for the coating transition lines in Figs. 2 a
3 are given in Eqs.~1! and ~2!, respectively.

The rest of this paper is organized as follows. In Sec.
the main ingredients in the dynamics of the contact line
discussed, and they are put together in Sec. III, wher
stochastic dynamical equation is proposed. In Sec. IV,
stochastic dynamical equation is characterized by its s
affine behavior in terms of various exponents. The me
field theory of a moving contact line is discussed in Sec.
accompanied by a linear relaxation theory in Sec. VI. T
effect of the nonlinearities is incorporated using a dynam
RG scheme, which is discussed in Sec. VII, followed by
results in Sec. VIII and some discussions in Sec. IX. So
details related to the differential geometry of the movi
liquid drop is relegated to the Appendix.

II. DYNAMICS OF A DEFORMING CONTACT LINE

Let us assume that the contact line is oriented along thx
axis, and is moving in they direction with the position de-
scribed byy(x,t)5vt1h(x,t), as depicted in Fig. 4.

A. Interfacial forces

If a line element of lengthdl5dxA11(]xh)2 is displaced
by dy(x,t), the interfacial energy will be locally modified b
two contributions:~i! the difference between the solid-vap
gSV and the solid-liquidgSL interfacial energies times th
swept area in which liquid is replaced by vapor, name
(gSV2gSL)dldy/A11(]xh)2, and~ii ! the work done by the
surface tension force, whose direction is along the unit v
tor T̂ that is parallel to the liquid-vapor interface at the co
tact and perpendicular to the contact line, asgT̂• ŷdldy.
Note that we are interested in length scales below the ca

FIG. 3. The suggested phase diagram of a contact line w
hydrodynamicdissipation on a disordered substrate. The asympt
form for the coating transition line is given in Eq.~2!. Note that the
coating transition line starts at 1/A3.0.577 for zero disorder.
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lary length, where gravity does not play a role. The over
change in the interfacial energy of the system can thus
written as

dE5E dxA11~]xh!2F g cosue

A11~]xh!2
2gT̂• ŷGdy~x,t !,

~3!

in which we have made use of the Young equation. Note t
both ‘‘forces’’ should be projected onto they axis when cal-
culating the work done for a displacement in this directio

B. Dissipation

To calculate the dissipation relevant to the dynamics
the contact line, we should consider only thenormalcompo-
nent of the velocity@3#. If the contact angle is very small, th
dominant contribution to the dissipation comes from the v
cous losses in the hydrodynamic flows of the liquid wed
@1#. For a slightly deformed contact line, we can assume t
the dissipation is well approximated by the sum of contrib
tions from wedge-shaped slices with local contact ang
u(x,t), as shown in Fig. 4. This is a reasonable approxim
tion because most of the dissipation is taking place in
singular flows near the tip of the wedge@1,11#. Using the
result for the dissipation in a perfect wedge, which is bas
on the lubrication approximation@1,29#, we can calculate the
dissipation in the hydrodynamic regime as

Ph5
1

2E dxA11~]xh!2S 3h,

u~x,t ! D Fv1] th~x,t !

A11~]xh!2G 2

, ~4!

whereh is the viscosity of the liquid and, is a logarithmic
factor of order unity@11#. One can show that the error in th
above estimate, which comes from overlap between
neighboring slices, only leads to curvature terms that
subdominant in the long wavelength limit.

Another physical process that is involved in causing d
sipation is molecular jumps near the tip of the contact lin
and is local in nature@2#. Therefore, in any small neighbor

th
ic

FIG. 4. The schematics of the system.
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hood the amount of dissipation is completely determined
the local value of the contact line velocity, while all th
molecular details of the dissipation is encoded in an effec
friction coefficientm21. The overall dissipation can then b
written as

Pl5
1

2mE dxA11~]xh!2Fv1] th~x,t !

A11~]xh!2G 2

. ~5!

C. Force balance

We can find the governing dynamical equation by bala
ing the total friction force obtained as d(Pl
1Ph)/d] th(x,t) with the interfacial force2dE/dh(x,t) at
each point along the contact line. In the limit of small conta
angles, we find@30#

F 1

m
1

3h,

u~x,t !Gv1] th~x,t !

A11~]xh!2
5

g

2
@ue

22u~x,t !2#. ~6!

The above equation might simply be recovered by loca
applying the result of Ref.@31# for straight contact lines
with the additional geometrical factor~that is needed when
the direction of motion is not perpendicular to the cont
line @3#! taken into account.

We can introduce a characteristic velocity for the hyd
dynamic friction asc0h5gue

3/(3h,), and a corresponding
velocity for the local friction asc0l5mgue

2 . It is then useful
to write the dynamical force balance equation in terms
these characteristic velocities. It reads

F 1

c0l
1

1

c0h

ue

u~x,t !Gv1] th~x,t !

A11~]xh!2
5

1

2 F12u~x,t !2

ue
2 G . ~7!

Note that the relative strength of the two dissipation mec
nisms is characterized by the ratioc0h /c0l , and we can
readily obtain the asymptotic form of the equation when
cal dissipation is dominant by taking the limitc0h /c0l→`,
and the corresponding form when hydrodynamic dissipa
dominates by taking the limitc0h /c0l→0.

D. Solving for the surface profile

To complete the calculation, we need to solve for the p
file of the surface and, in particular, the angleu(x,t) as a
function of h(x,t).

We may assume that the pressure at the surface eq
brates rapidly enough, so that for the effective study of
long time dynamics of the contact line it will be sufficient
set the instantaneous Laplace pressure to zero@10,11#. For
sufficiently small contact angles, the surface profilez(x,y,t)
near the contact line can then be found as a solution of
Laplace equation

¹2z~x,y,t !50. ~8!

One can write a general solution for Eq.~8!, of the form
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z~x,y,t !5u~y2vt !1E dk

2p
b~k,t !exp@ ikx2uku~y2vt !#,

~9!

which yields the moving liquid wedge profile for a flat con
tact line. Imposing the boundary conditionz„x,vt
1h(x,t),t…50 at the position of the contact line then yield

b~k,t !52uFh~k,t !1E dq

2p
uquh~q,t !h~k2q,t !1O~h3!G .

~10!

Note that we have performed the calculation up to the sec
order in h to find the leading-order nonlinearity in the dy
namical equation, and that since the nonlinear terms
glected in the expression for Laplace pressure are of the t
order inz, this calculation is consistent.

From the slope of the liquid surface at the position of t
contact line~see Fig. 4 and the Appendix! one can then ob-
tain an expression for the contact angle as a function of
contact line deformation. We find

u~x,t !5uH 11b0E dk

2p
ukuh~k,t !eikx1

1

2E dk

2p

dk8

2p

3@b1kk81b2ukuuk8u1b3uk1k8u~ uku1uk8u

2uk1k8u!#h~k,t !h~k8,t !ei (k1k8)xJ , ~11!

with b051, b151, b250, andb351. This can then be use
in Eq. ~6! to yield the dynamical equation.

One may, however, question the validity of the instan
neous pressure relaxation assumption. To improve on
approximation, one should attempt to solve for the dynam
of the liquid surface together with the contact line dynami
and examine the corresponding time scales for the sur
and contact line relaxations.

This dynamics can be formulated, within the framewo
of the lubrication approximation, using a continuity equati
of the form

] tz~x,y,t !5“•S z3

3h
¹pD , ~12!

where the fluid film is locally described as a Poiseuille flo
under the influence of the gradient of the Laplace pressu

p~x,y,t !52g¹2z~x,y,t !. ~13!

Combining the above equations then yields

] tz~x,y,t !1
g

3h
“•@z3

“¹2z#50, ~14!

which is the dynamical equation for the surface deformat
in the lubrication approximation@9#. To proceed systemati
cally, one should attempt to solve Eq.~14! for a moving
contact line with equilibrium contact angleue subject to the
boundary conditionz„x,vt1h(x,t),t…50, perturbatively in
powers of the contact line deformationh up to second order
3-4
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Unfortunately, this seems to be a formidable task, becaus
the complex structure of this nonlinear partial different
equation. In fact even at the zeroth order, i.e., for the cas
a flat contact line, this problem is still the subject of mu
theoretical investigation@1,4,6,29,32#.

We can instead try to estimate the surface relaxation t
from Eq.~14! using dimensional arguments. If we conside
deformation of the characteristic sizeq21 ~in both x and y
directions!, and put in a wedgelike profile in the nonline
term of Eq.~14! of the formz;uq21, we find that the cor-
responding ~inverse! relaxation time scales ast21(q)
;(gu3/h)q. Interestingly, this is the same as the time sc
that we find for the contact line relaxation@see Eq.~49!
below#, and it shows that the instantaneous surface relaxa
assumption is not feasible. However, since surface relaxa
introduces no new time or length scales in the system
seems plausible to assume that the contact-angle profile
function of the contact line deformation, as obtained from
full systematic solution of Eq.~14!, will still maintain the
form given in Eq.~11! in the long time and long length-sca
limit, perhaps with different values for the numerical coef
cientsbn . Since we will be interested only in this limit in th
context of the RG calculations, it seems reasonable to use
general form proposed in Eq.~11!.

E. Disorder

In most practical cases, the dynamics of a contact lin
affected by the defects and heterogeneities in the substra
addition to dissipation and elasticity that we have conside
so far. If the interfacial energiesgSV and gSL are space de
pendent with the corresponding averages beingḡSV andḡSL ,
a displacementdy(x,t) of the contact line is going to lead t
a change in energy as

dEd5E dxg„x,vt1h~x,t !…dy~x,t !, ~15!

where

g~x,y!5gSV~x,y!2gSL~x,y!2~ ḡSV2ḡSL!. ~16!

Incorporating this contribution in the force balance and
glecting the dependence onh(x,t) in Eq. ~15! leads to an
extra force termg(x,vt) on the right hand side of Eq.~6!.
This would act as a noise term in the dynamical equation
contact line deformation of the form

h~x,t !5S mu

u13hm, Dg~x,vt !. ~17!

Note that the above assumption, is a good approxima
provided we are well away from the depinning transitio
and the contact line is moving fast enough@23#.

Assuming that the surface disorder has short-range co
lations~so that the correlation length is a microscopic leng
a) with a strengthg, with a Gaussian distribution describe
by

^g~x,y!&50,
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^g~x,y!g~x8,y8!&5g2a2d~x2x8!d~y2y8!, ~18!

we can deduce the distribution of the noise as

^h~x,t !&50,

^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!, ~19!

where the strength of the noise is given as

D5
g2a2

2uvu S mu

u13hm, D 2

. ~20!

III. DYNAMICAL EQUATION OF MOTION

We can now put together all the different ingredients
the dynamics of the contact line that we discussed in Sec
and obtain the governing dynamical equation. Inserting
~11! in the force balance relation Eq.~7!, and adding the
noise term of Eq.~17!, we find

] th~k,t !52cukuh~k,t !1h~k,t !

2
1

2E dq

2p
l~q,k2q!h~q,t !h~k2q,t !, ~21!

up to the second order in deformations, with a correspond
nonlinear coupling as

l~q,k2q!52l1q~k2q!1l2uquuk2qu

1l3uku~ uqu1uk2qu2uku!. ~22!

The zeroth-order term in the force balance equation provi
the contact-angle–velocity relation as

v5
c0h

2

u

ueF 12
u2

ue
2

11
c0h

c0l

u

ue

G , ~23!

and we can also identify the other coupling constan
namely, the relaxation speed

c5
c0h

2

u

ueF S 3
u2

ue
2 2112

c0h

c0l

u3

ue
3D

S 11
c0h

c0l

u

ue
D 2 b0G , ~24!

and the nonlinear coupling constants

l15
c0h

2

u

ueF S u2

ue
2 21D

S 11
c0h

c0l

u

ue
D 1

S 123
u2

ue
2 22

c0h

c0l

u3

ue
3D

S 11
c0h

c0l

u

ue
D 2 b1G ,

~25!
3-5
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l25
c0h

2

u

ueF S 3
u2

ue
2 2112

c0h

c0l

u3

ue
3D

S 11
c0h

c0l

u

ue
D 2 b2

1

S 3
u2

ue
2 1

c0h

c0l

u

ue

13
c0h

c0l

u3

ue
3 1

c0h
2

c0l
2

u4

ue
4D

S 11
c0h

c0l

u

ue
D 3 ~2b0

2!G ,

~26!

and

l35
c0h

2

u

ueF S 3
u2

ue
2 2112

c0h

c0l

u3

ue
3D

S 11
c0h

c0l

u

ue
D 2 b3G ~27!

in terms of the dynamic contact angle. The spectrum of
noise term in Fourier space is characterized as

^h~k,t !&50,

^h~k,t !h~k8,t8!&52D~2p!d~k1k8!d~ t2t8!, ~28!

where the strength of the noiseD is given as in Eq.~20!, or
equivalently as

D5
a2

U12
u2

ue
2 U

S c0h

u

ue
D

S 11
c0h

c0l

u

ue
D S g

gue
2D 2

. ~29!

The above dynamical equation and its corresponding ph
cal implications will be discussed in detail in the followin
sections.

IV. CHARACTERIZING THE STOCHASTIC DYNAMICS

Due to the presence of the heterogeneities in the subst
the contact line undergoes dynamical fluctuations during
~average! drift motion. These fluctuations, which are go
erned by the stochastic dynamical equation given in Sec
@Eq. ~21!#, can best be characterized by the width of t
contact line, which is defined as

W2~L,t ![
1

LdE ddx^h~x,t !2&5E ddk

~2p!d
^uh~k,t !u2&,

~30!

where the averaging is with respect to the noise term in
~21!. Note that we have generalized the contact line to
d-dimensional object of sizeL so that the dependence on th
dimensionality becomes manifest.
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Since the stochastic dynamics described by Eq.~21! cor-
responds to scale-free fluctuations, the resulting two-po
correlation function should have a scaling form as

^uh~k,t !u2&5
1

kd12z
G~kzt !. ~31!

The functionG(u) has the property that it saturates to a fin
value for largeu, to ensure that a stationary regime can
achieved in the long time limit. Using the above scali
form, the width of the contact line will be given as

W2~L,t !;E
p/L

p/a dk

k112z
G~kzt !, ~32!

which yields

W~L,t !;H tz/z, t!Lz

Lz, t@Lz.
~33!

From equilibrium phase transitions, say in a magnetic s
tem, we know that the fluctuations in the overall magneti
tion are proportional to the susceptibility, which is a respon
function. It is known that this quantity diverges at the critic
point for second-order phase transitions, while it stays fin
for first-order phase transitions. For ad-dimensional system
of sizeL, the divergence appears asx(Tc);M2/Ld;L22h,
where h is a critical exponent, andM5*ddxm(x) is the
overall magnetization defined via the order parameterm(x)
that is the magnetization density.

We can study the overall fluctuations in the order para
eter field for the coating transitiondu(x,t)5u(x,t)2u in the
contact line problem, where the velocityv is playing the role
of a tuning parameter. One can define

Q2

Ld [
1

LdE ddxddx8^du~x,t !du~x8,t !&, ~34!

and use the relation betweenu(x,t) andh(x,t) given in Eq.
~11!, to find

Q2

Ld ;E ddxE ddk

~2p!d
k2eik•x^uh~k,t !u2& ~35!

to the leading order. We can now use the scaling form of
~31! in the long time limit, and obtain

Q2

Ld ;E ddxE ddk

~2p!d
k2eik•x

1

k2z1d
;E

a

L dx

x32d22z
,

~36!

which yields

Q2

Ld ;5
1, z,

22d

2

L2z1d22, z.
22d

2
.

~37!
3-6
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We thus find interestingly that the value of the roughn
exponent at the onset of the coating transition can determ
the order of the dynamical phase transition: the phase t
sition is first order for z,22d/2, and it issecond orderfor
z.22d/2. In the case of a second-order phase transition,
can define a dynamical version of the critical exponenth as

h542d22z, ~38!

based on the above analogy with the equilibrium critical p
nomena. We can then define an order parameter exponeb
via

Q

Ld ;~vc2v !b, ~39!

and an exponentn that characterizes the divergence of t
correlation lengthj ~see below! as

j;~vc2v !2n, ~40!

and obtain

Q2

Ld ;Ld22b/n ~41!

at the critical pointv5vc . Comparing Eqs.~37! and ~41!
then yields an exponent identity

b5~12z!n. ~42!

Similarly, we can calculate the magnitude of local ord
parameter fluctuations. We find

^du~x,t !2&;E ddk

~2p!d
k2^uh~k,t !u2& ~43!

to the leading order, which yields

^du~x,t !2&;E
p/L

p/a dk

k2z21
G~kzt ! ~44!

and, consequently,

^du~x,t !2&;H t2(z21)/z, t!Lz

~dust~L !!2, t@Lz,
~45!

where

dust~L !;H 1, z,1

Aln~L/a!, z51

Lz21, z.1.

~46!

The above result shows that the extent of the order param
fluctuations actually depends on the value of the roughn
exponentz in the stationary limit, i.e., it will be finite forz
,1, and unbounded forz.1. It is important to note thatz
.1 signals a breakdown of our perturbative scheme in d
ing with the nonlinearities in the system, as one can sh
03160
s
ne
n-

e

-
t

r

ter
ss

l-
w

that the neglected nonlinear terms in Eq.~21! can actually be
organized as a power series in the parameterLz21 in the long
wavelength limit.

A systematic study of the stochastic dynamics descri
by Eq.~21! will yield the values ofz andz, and thus provide
us with a characterization of the statistical properties of
moving contact line.

V. CONTACT-ANGLE –VELOCITY RELATION:
MEAN-FIELD THEORY FOR THE COATING

TRANSITION

The dynamics described in Sec. III, can be first studied
the mean-field approximation, where the contact line is
sumed to be a straight line. In this case, the relation betw
the dynamic contact angle of the wetting front, and its velo
ity is given by Eq. ~23!. It is instructive to examine the
limiting behavior of this equation in the two cases of loc
dissipation and hydrodynamic dissipation scenarios, se
rately.

A. Local approach

In this regime, Eq.~23! yields

u

ue
U

l

5A12
2v
c0l

~47!

for v,c0l /2, whileu50 identically forv.c0l /2. This func-
tion is plotted in Fig. 5.

As can be readily seen from Fig. 5, increasingv would
lead to decreasing values ofu until at a critical velocityvcl
5c0l /2 it finally vanishes continuously. A vanishing conta
angle presumably corresponds to formation of a Land
Levich film. The value of the dynamic contact angleu serves

FIG. 5. The reduced order parameter (u/ue) l as a function of the
dimensionless velocityv/c0l for local mechanism@Eq. ~47!#. The
dynamical phase transition atvcl /c0l51/2 is predicted to be of
second order in this picture.
3-7
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as the order parameter for this dynamical phase transit
while v is the tuning parameter. The continuous vanishing
the order parameter makes the phase transition classifie
second order. As in the general theory of critical phenome
a mean-field exponentb51/2 is characterizing the vanishin
of the order parameter in terms of the tuning parameter.

B. Hydrodynamic approach

In this case, Eq.~23! leads to1

u

ue
U

h

5
1

A3
F S 2

3A3v
c0h

2 iA12
27v2

c0h
2 D 1/3

1S 2
3A3v
c0h

1 iA12
27v2

c0h
2 D 1/3G . ~48!

The above formula, which holds only forv,c0h/3A3, has
two branches and only the one that recoversu5ue for zero
velocity is acceptable as plotted in Fig. 6. While atv
5c0h /3A3 we find u5ue /A3, we expect to haveu50 for
higher velocitiesv.c0h /3A3. Therefore, the order param
eter u experiences a finite jump at the transition veloc
vch5c0h /3A3, which is the hallmark of a first-order phas
transition.

VI. LINEAR THEORY

One can go beyond the simple mean-field treatment,
study the effect of linear fluctuations on top of the mean-fi
theory. There are different aspects to the linear dynamics

1Note that the expression in Eq.~48! is real, and thei is retained
only to keep the appearance of the formula simpler.

FIG. 6. The reduced order parameter (u/ue)h as a function of
the dimensionless velocityv/c0h for the hydrodynamic mechanism
@Eq. ~48!#. The dynamical phase transition atvch /c0h51/(3A3)
.0.192 is predicted to be of first order in this picture.
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one can elaborate on, as considered in this section.

A. Relaxation

We can study the relaxation dynamics of a moving cont
line only by using the linear term in Eq.~21!. We find that
each deformation mode of wave vectork relaxes with a char-
acteristic time scale given as

t21~k!5cuku, ~49!

where the relaxation velocityc is given as in Eq.~24! above.
In fact, one can show from Eqs.~23! and ~24! that the

relaxation velocityc is related to the slope of the contac
angle–velocity curve as

c52b0u
dv
du

. ~50!

This proves that the onset of instability in the contact ang
signalled by a diverging slope ofdu/dv, exactly corresponds
to where the relaxation velocityc vanishes. In other words
exactly at the onset of the coating transition~as found in the
mean-field scheme of Sec. V!, where the order parameter ha
a singular behavior, the relaxation becomes infinitely slo
and the distorted contact line does not relax.

This ‘‘coincidence’’ suggests strongly that the coatin
transition—the onset of leaving a Landau-Levich film—c
be described as a dynamical phase transition in terms of
deformations of the contact line and its statistical roughn
on a disordered substrate.

B. Fluctuations

To account for the statistical fluctuations of the movi
contact line on a disordered substrate, we can also inc
the noise term in Eq.~21!, and calculate the width of the
contact line. We find

W~L,t !;5
At, t!

a

c

AlnFct

a G , a

c
!t!

L

c

AlnS L

aD , t@
L

c
.

~51!

There are two important time scales in the above equat
~i! the ‘‘microscopic’’ timea/c that corresponds to the cros
over from local diffusive dynamics to collective motio
along the contact line, and~ii ! the ‘‘macroscopic’’ timeL/c
that corresponds to the crossover to the stationary state
thus find from Eq.~51! that the stochastic deformations o
the contact line are characterized byz050 andz051, within
the linear theory.

C. Breakdown

The nonlinear term in Eq.~21! will modify the above
results if it becomes appreciable at long length scales
compared to the linear term. To examine under what con
3-8
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tions this may take place, we can estimate the ratio of
two terms in Eq.~21!, which scales as

c0~L/a!2z021

c~L/a!z0
;

ac0Aln~L/a!

Lc
,

wherec0 could be set by eitherc0l or c0h . The nonlinear
term is thus appreciableonly when the smallest time scale i
the linear theorya/c becomes comparable toL/c0 , which
happens near the coating transition whenc becomes smal
~see Sec. VI A!. This confirms that a consistent study of th
coating transition should take a proper account of the n
linear terms.

VII. EFFECT OF THE NONLINEAR TERM

Let us now attempt to systematically study the dynami
phase transition in the moving contact line using an R
scheme. The dynamical equation, which can be gener
written in d dimensions as@33#

] th~k,t !52ckh~k,t !1h~k,t !2
1

2E ddq

~2p!d

3l~q,k2q!h~q,t !h~k2q,t !, ~52!

with l(q,k2q) given as in Eq.~22!, belongs to the genera
class of Kardar-Parisi-Zhang~KPZ! equations@34–39#. We
take a noise spectrum given by

^h~k,t !&50,

^h~k,t !h~k8,t8!&52D~2p!ddd~k1k8!d~ t2t8!, ~53!

and employ standard RG techniques following Ref.@35# to
calculate the RG equations describing the flow of the c
pling constants.

A. Perturbation theory

To perform this calculation, we first need to construc
perturbation theory that takes into account the nonlin
term. This is done more easily if we perform a Fourier tra
formation in the time variable in Eq.~52!, which yields
03160
e

-

l

lly

-

r
-

2 ivh~k,v!52ckh~k,v!1h~k,v!

2
1

2E dV

2p

ddq

~2p!d
l~q,k2q!h~q,V!

3h~k2q,v2V!. ~54!

This equation can then be rewritten in the form

h~k,v!5G0~k,v!h~k,v!2
1

2
G0~k,v!E dV

2p

ddq

~2p!d

3l~q,k2q!h~q,V!h~k2q,v2V!, ~55!

in which the bare response function is given as

G0~k,v!5
1

ck2 iv
. ~56!

We can then define the full response functionG(k,v) via

h~k,v!5G~k,v!h~k,v!, ~57!

and use the spectrum for the Fourier transform of the no
as

^h~k,v!&50,

^h~k,v!h~k8,v8!&52D~2p!d11dd~k1k8!d~v1v8!,
~58!

to find the response function perturbatively in thel param-
eters.

Up to second order in the perturbation theory, we find

G~k,v!5G0~k,v!143
1

4
G0~k,v!22DE dV

2p

ddq

~2p!d

3l~q,k2q!l~2q,k!G0~q,V!

3G0~2q,2V!G0~k2q,v2V!, ~59!

which can be rewritten as
G21~k,v!5G0
21~k,v!22DE

2`

` dV

2p
E

0

L

qd21dq
Sd21

~2p!d
E

0

p

du sind22u
1

@cAq21k222kq cosu2 i ~v2V!#~c2q21V2!

3@l1~q22qk cosu!1l2qAq21k222kq cosu1l3kq1l3kAq21k222kq cosu2l3k2#

3@l1kq cosu1l2qk1l3qAq21k222kq cosu1l3kAq21k222kq cosu2l3~q21k222kq cosu!#,

~60!
3-9
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whereL5p/a is an upper cutoff for the wave-vector set b
an inverse microscopic length scale, andSd is the surface
area of a unit sphere ind dimensions. We can then perform
the frequency integration, expand the integrand in power
k/q ~that is justified because we are interested in the lo
wavelength behavior of the system!, and integrate over the
angular variable to obtain

G21~k,v!5G0
21~k,v!2

D

2c2

Sd

~2p!d
~l11l2!~l21l3!

3S E qddqD k. ~61!

Assuming a same form for the full response function as
bare one, namely,

G~k,v!5
1

cRk2 iv
, ~62!

one then obtains a renormalized elastic constant as

cR5cH 12F ~l11l2!~l21l3!D

2c3 G Sd

~2p!d S E qddqD J .

~63!

A similar calculation can be performed to obtain t
renormalized noise amplitude, which is defined via

^h~k,v!h~2k,2v!&52DRG~k,v!G~2k,2v!. ~64!

One obtains

2DR52D123S 1

2D 2

3~2D !2E dV

2p

ddq

~2p!d
l~q,k2q!

3l~2q,q2k!G0~q,V!G0~2q,2V!

3G0~k2q,v2V!G0~q2k,V2v!, ~65!

which in the smallk limit yields

DR5DH 11F ~l11l2!2D

4c3 G Sd

~2p!d S E qddqD J . ~66!

Finally, one can show that similar to the original KP
problem@34#, none of thel parameters are renormalized,
that we have

lR~q,k2q!5l~q,k2q!. ~67!

We can now use the results of the perturbation theory
construct a perturbative RG scheme.

B. Renormalization-group-calculation

In order to recapitulate the perturbation theory into an R
calculation, we should only integrate over a layer of wa
vectors fromL/b to L and see how the coupling constan
are affected by that. This step, which makes up the co
graining procedure, will lead to the same results as in E
03160
of
g

e

o

e

se
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~63!, ~66!, and ~67!, in which the wave-vector integration
reads*L/b

L qddq5@Ld11/(d11)#(12b2(d11)). This should
then be followed by the scale transformationsx→bx, t
→bzt, andh(x,t)→bzh(x,t), which for the scale factor of
the form b5el and for infinitesimal values ofl yields the
following RG flow equations for the coupling constant:

dc

dl
5c@z212U#,

dl~q,k2q!

dl
5l~q,k2q!~z1z22!,

dD

dl
5DFz22z2d1S l11l2

l21l3
D U

2 G , ~68!

in which

U5
pSd~l11l2!~l21l3!D

~2a!d11c3
. ~69!

To study the fixed point structure of the above set of flo
equations, we setz511U and z512U, and look at the
flow equation forU:

dU

dl
52~d11!U1F61S l11l2

l21l3
D G U2

2
, ~70!

which has two stable fixed points atU50 ~linear theory! and
U5` ~strong coupling!, as well as an intermediate unstab
fixed point at

U5U* [
2~d11!

61~l11l2!/~l21l3!
. ~71!

For U,U* , the nonlinearity is irrelevant and the exponen
are given by the linear theory, i.e.,z050 andz051, while
for U.U* the behavior of the system is governed by
strong coupling fixed point which cannot be studied pert
batively. The fixed point, atU* corresponds to a roughenin
transition of the moving contact line. The exponents at
transition are

z511U* ,

z512U* , ~72!

which turn out to be nonuniversal. The roughening transit
corresponds to the limit of stability of the moving conta
line phase. The phase described by the strong coupling fi
point could presumably correspond to a Landau-Levich fi
or a pinned contact line.

We can also study how the transition is approached
linearizing the flow equation near the fixed point. SettingU
5U* 1dU, we findddU/dl5(d11)dU, which implies di-
vergence of the correlation length near the transition as

j;udUu2n, ~73!

with
3-10
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n5
1

d11
. ~74!

The correlation length corresponds to the typical size
rough segments in the contact line, which should diverge
the transition is approached~see Fig. 1!.

VIII. FIXED POINT EQUATION: PHASE DIAGRAM
AND EXPONENTS

In principle, the position of a phase boundary that se
rates the different phases could be obtained from a fi
point equation@such as Eq.~71!#. However, in most RG stud
ies the relation between the phenomenological paramete
the theory and the microscopic parameters is not known,
thus the fixed point equation cannot help us obtain the ph
p
s

ni
nt
ig
g
ar
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03160
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diagram of the system in terms of the real control para
eters.

In the present case, however, the fact that we have u
some physical models to arrive at the the dynamical eq
tions allows us to make such direct connections. If we u
the relations obtained for the parameters as a function of
contact angle in Sec. III, and insert them in the fixed po
equation~71! with d51, which can be written as

D

a2 5
8

p

c3

~l11l2!~l117l216l3!
, ~75!

we can map out the phase diagram of the system, and ca
late the value of the exponents.

Using Eqs.~23!–~29!! in Eq. ~75! yields equations for the
phase boundary as
g

gue
2U

l

5

4S 2b0
3

p
D 1/2S u

ue
D 3U12

u2

ue
2U1/2

F12~122b112b212b0
2!

u2

ue
2G 1/2F12~122b1114b2114b0

2112b3!
u2

ue
2G 1/2 ~76!

for the local case, and

g

gue
2U

h

5

6S 3b0
3

p
D 1/2S u2

ue
2 2

1

3
D 3/2U12

u2

ue
2U1/2

F ~b12b221!1~123b113b216b0
2!

u2

ue
2G 1/2F ~b127b226b321!1~123b1121b2142b0

2118b3!
u2

ue
2G 1/2 ~77!
ese
rsal.
for the hydrodynamic case. These phase boundaries are
ted in Figs. 2 and 3~solid line! for a choice of parameter
b051, b151, b2521, andb3521.

The phase boundary that corresponds to a roughe
transition of the moving contact line has two differe
branches. The first branch that happens at relatively h
velocities presumably corresponds to the onset of leavin
Landau-Levich film. In the local case, the phase bound
for this transition start at zero contact angle for zero disord
and has a limiting form as reported in Eq.~1! above, with

acl5
~2p!1/6

2Ab0

, ~78!

whereas in the hydrodynamic case the boundary starts
finite value of the contact angle, with the limiting form a
reported in Eq.~2!, in which

ach5
1

2A3b0
Fp6 ~3b0

221!~21b0
221!G1/3

. ~79!
lot-

ng

h
a
y
r,

t a

We can calculate the value of the exponents along th
phase boundaries, and as it turns out they are nonunive
We find

zcl5112~2p!1/3S b0
21b21b3

b0
D S g

gue
2D 2/3

, ~80!

zcl5122~2p!1/3S b0
21b21b3

b0
D S g

gue
2D 2/3

~81!

for the local case, and

zch5
321/~3b0

2!

721/~3b0
2!

2
~36p!1/3

b0

~3b0
221!1/3

~21b0
221!5/3

3@3b0
2~b11b321!2b22b3#S g

gue
2D 2/3

, ~82!
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zch5
1121/~3b0

2!

721/~3b0
2!

1
~36p!1/3

b0

~3b0
221!1/3

~21b0
221!5/3

3@3b0
2~b11b321!2b22b3#S g

gue
2D 2/3

~83!

for the hydrodynamic case.
The other branch of the phase boundaries appear

near the equilibrium contact angle corresponding to low
locities, and presumably corresponds to the onset of pinn
In other words, the pinning transition~which is the opposite
to the depinning transition! appears as a roughening of th
contact line imposed by the static minimum energy confi
ration on the disordered substrate, as it slows down to r
The above prediction for the phase boundary of the pinn
transition is in agreement with a previous prediction ba
on the hysteresis in receding and advancing contact an
@16#. We should keep in mind, however, that we have ma
the assumption that the dependence in the noise termh on
the shape of the contact line can be neglected for any n
vanishing drift velocity. This approximation is known t
break down in the vicinity of the pinning transition, sinc
upon approaching the pinning transition the contact line
locity becomes progressively small, and a more sophistica
functional RG approach is necessary to deal with this dep
dence@21,23#.

The two branches of the phase boundaries meet at a j
tion point, calledT in Figs. 2 and 3, where they both develo
a vanishing slope as obtained from Eqs.~76! and~77!. While
the above argument suggests that the roughening trans
driven by the KPZ-type nonlinearity would not characteri
the depinning transition, we believe that the prediction
the existence of a junction point should not be sensitive
the approximation involved in Eq.~17! and should survive in
a full description.

Although the fact that we do not know the values of t
numerical constantsbn makes us unable to predict the valu
of the exponents, we can nevertheless put some bound
them using simple physical requirements. For example,
expect on physical grounds that the critical contact angle
the coating transition increases with disorder. Then Eqs.~2!
and ~79!, together with a requirement that we have a roug
ness exponent that is less than 1, imply thatb0

2.1/3, which
results in a criterion

1

3
,zch,

3

7
, ~84!

for the roughness exponent in the hydrodynamic case. In
local case, to have a roughness exponent that is less th
we should haveb0

21b21b3,0, as can be seen from Eq
~80!.

From the above results and bounds on the values of
roughness exponents in the two different approaches, an
analysis of Sec. IV, we can conclude that at least in the w
disorder limit,zcl.

1
2 andzch, 1

2 , and thus the coating tran
sition remains to be first order in the hydrodynamic pictu
03160
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and second order in the local picture even beyond the me
field theory, i.e., within the RG scheme.

IX. DISCUSSION

The above study of the dynamics of a moving contact l
on a disordered substrate reveals that the instability co
sponding to the onset of leaving a Landau-Levich film
high velocities can be described as a roughening transitio
the contact line. For advancing contact lines, the ph
boundary corresponding to pinning extends continuously
the strong disorder regime. For the receding case, howe
the phase boundaries corresponding to pinning and to
Landau-Levich transition asymptote to a maximum with ze
slope, where we identify a junction point, denoted byT in
Figs. 2 and 3.

For stronger disorder, the pinned contact line presuma
goes directly into the Landau-Levich phase: the edge of
liquid drop is pinned so strongly that it remains still when t
liquid wedge starts to move upon decreasing the con
angle, and thus a film is left behind. In this sense, at
dashed line in the phase diagram~Figs. 2 and 3!, nothing
really happens to the contact line itself, while the body of t
liquid drop is ‘‘depinned.’’ This behavior has in fact bee
observed in experiments with liquid helium on a cesium s
strate, where the receding contact angle has always b
found to vanish identically immediately after depinnin
@18,25#.

One can get a plausible picture of the roughening tran
tion in terms of fluctuating domains of different sizes,
analogy with equilibrium phase separations in, say, bin
mixtures. As is sketched in Fig. 1, a portion of the movi
contact line can be instantaneously pinned to a defect on
substrate, thereby nucleating a domain where the liquid
pinned to the substrate. These domains are rough, bec
the contact line has to conform to the minimal energy co
figuration imposed by the substrate disorder, and they
exist in length scales up to the correlation lengthj. As the
transition is approached, the correlation length increases
til at some point one of the domains enlarge to a macrosco
scale and span the whole system, corresponding to the d
gence of the correlation length at the critical point.

One can use a scaling argument to account for the po
law in Eqs.~1! and ~2!. If we take the above KPZ equatio
and make the scale transformationst→ct and h→AD/ch,
the coefficient of the linear term as well as the strength of
noise term will be set to 1, and the only remaining coupli
constant~the coefficient of the nonlinear term! will have the
form lD1/2/c3/2. We expect the roughening transition to ta
place when this coupling constant is of order unity, whi
yields Eqs.~1! and ~2! when the valuesD;g2, cl;uc

2/ue
2 ,

ch;(uc /ue21/A3), andl;const are used.
We finally mention that this work can hopefully motiva

two types of experiments. One can try to probe the relaxa
of a moving contact line, similar to the Ondarcuhu-Veys
experiment on a static contact line@12#, and measure the
velocity dependence of the dispersion relation. This dep
dence could be used to determine the dominant dissipa
mechanism@28#. It is also interesting to systematically stud
3-12
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the coating transition~onset of leaving a Landau-Levic
film! for receding contact lines on a disordered substrate
ing video microscopy techniques. In particular, it would
interesting to look for a roughening of the contact line befo
the Landau-Levich film is formed, and measure the cor
sponding roughness exponents.
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APPENDIX: GEOMETRY OF THE SURFACE NEAR
THE CONTACT LINE

Here we briefly review some of the aspects of the diff
ential geometry of surfaces that are useful in this conte
The free surface of the liquid can be described by the e
bedding

R~x,y!5„x,y,z~x,y!…, ~A1!

using which we can find two independent unit tangent v
tors to the surface at each point,
03160
s-

e
-

,

e

-
t.
-

-

t̂x[
]x R

u]xRu
5

1

A11~]xz!2
~1,0,]xz! ~A2!

and

t̂y[
]y R

u]yRu
5

1

A11~]yz!2
~0,1,]yz!. ~A3!

We can also define the unit tangent vector for the contact
~see Fig. 4! as

t̂5
1

A11~]xh!2
~1,]xh,0!. ~A4!

To find the unit vectorT̂, which shows the local direction a
which the surface tension force is acting~see Fig. 4!, we
should note that it is a tangent to the surface, so it can
written as

T̂5uxt̂x1uyt̂y . ~A5!

Imposing the requirements that it is perpendicular to the c
tact line T̂• t̂50 and that it is a unit vectorT̂251 yields the
two parameters, and we obtain
T̂5
~2]xh,1,2]xh]xz1]yz!

$11~]yz!21~]xh!2@11~]xz!2#22~]xh!~]xz!~]yz!%1/2
. ~A6!

We can also define the unit vector normal to the contact line~see Fig. 4! as

n̂5
1

A11~]xh!2
~2]xh,1,0!, ~A7!

using which we can define the local contact angle as

u~x!5cos21~ T̂•n̂!, ~A8!

where

T̂•n̂5
A11~]xh!2

$11~]yz!21~]xh!2@11~]xz!2#22~]xh!~]xz!~]yz!%1/2
. ~A9!

Note that we haveA11(]xh)2T̂• ŷ5cosu(x).
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