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ABSTRACT: We present a new scaling approach to describe an arbitrarily dense polymer interface (layer
made of overlapping polymer chains). Our analysis is based on a description of the layer in terms of
loops and tails. Within a simple scaling model for the behavior of the loops and tails, we are able to
relate the features of the interface to the “loop density profile” S(n), defined as the number (per unit
area) of loops and tail having more than nmonomers. Our theory predicts (as functions of S) the variations
of the monomer density, the extension of the layer, the adsorbance (per unit area), and the effective free
energy for various conditions (“good” solvent, Θ solvent, or melt). We are able to recover, in an unusual
and rather staightforward manner, previously known results on reversibly and irreversibly adsorbed
layers; moreover, new insights into the physics of these situations emerge. New results are obtained for
interfaces made of grafted chains which adsorb reversibly on the surface. Both quantitative and qualitative
corrections to previous theories are obtained.

1. Introduction
Long polymer chains in contact with a surface can

build layers with remarkable properties from both scien-
tific and technological points of view. Consequently,
many studies have been devoted to these polymer layers
in the past few years.1-6 One of the most commonly
investigated situations is uniform adsorption, in which
all the segments of the polymer are equally attracted
to the surface. The surface can be a solid/liquid inter-
face or the interface between two immiscible solvents.
For definiteness, we assume a solid/liquid interface.
When in contact with an attractive surface, the chains
adsorb and build a layer which can be described as a
continuous succession of loops and tails of different
sizes,6 as depicted in Figure 1. The behavior of these
loops (or tails) results from a competition between
monomer-monomer interactions and elastic forces:
they stretch away to exploit the relatively low density
at the outer edge of the layer, this elongation being
counterbalanced by elastic restoring forces of entropic
origin. A complete characterization of the resulting
interface requires both the determination of the global
properties of the structure (thickness, monomer density
profile, etc.) and the loop and tail size distributions.
Clearly, these quantities are not independent of each
other, and, depending on the situation, theoretical
studies have inferred the loop distribution from the
monomer density profile, or the reverse.
For the reversible adsorption situation, scaling argu-

ments have been used to calculate the thickness of the
layer, L, and the variation of the volume fraction along
the normal of the surface, φ(z).6 In a “good solvent”, L
scales as aN3/5, where a is the size of the monomer and
N is the polymerization index, and φ(z) varies as z-4/3

(apart from a small region close to the surface).7,8 These
results have been deduced from the crucial assumption
that the layer should be at equilibrium with a dilute
solution under no constraint. The loop distribution can
then be computed:9 The number per unit surface, S(n),

of loops and tail having more than nmonomers is given
by10

For brevity, we will refer to the function S as the “loop
density profile” of the layer. Note that the number per
unit surface of loops and tails having exactly n mono-
mers is given by -S′(n), where S′ denotes the derivative
of S.
Conversely, the loop and tail distribution can be used

as a tool to get the global characteristics of the layer.
This has been done by one of us in the case of irrevers-
ible adsorption, where the monomers are strongly bound
to the surface.11 Such behavior was first reported by
Cohen-Addad et al.12 for poly(dimethylsiloxane) (PDMS)
adsorbed on silica wafers. The characteristic feature
of this situation is that the loops and tails are “pinned”
at the surface, and no rearrangement in the loop
distribution can take place. The structure of the layer
is thus strongly dependent on how it was assembled.
One particular scenario, which has been the subject of
many recent works, assumes the following sequence of
operations:11,13-17 (a) the solid surface is put in contact
with a polymer melt at equilibrium, (b) the monomers
adsorb instantaneously and irreversibly, and (c) the
chains which are not in direct contact with the surface
are washed away. The essential physics is quite
simple: the loop distribution of the resulting layer is
the equilibrium loop distribution at the melt interface
which has been frozen by contact with the adsorbing
surface. This leads to a power law for the loop density
profile, a signature of all equilibrium situations, as
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Figure 1. Sketch of a dense polymer layer (layer made of
overlapping polymer chain).

S(n) = 1/(a2n6/5) (1)
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shown below. From a careful examination of the con-
figuration of a single chain at the interface between the
melt and the solid, one obtains11

which allows for the determination of the characteristics
of the layer. In a good solvent, e.g., L = aN5/6 and φ(z)
∼ z-2/5.
To date, this approachsdescribing a polymer layer on

the basis of its loop and tail distributionshas been
essentially developed in two directions. (i) A full self-
consistent-field theory has been completed for arbitrary
polydisperse polymer “brushes” 18 (a layer made of
chains attached by one end to a surface is often referred
to as a polymer brush). However, this study does not
properly account for monomer-monomer interactions
in good solvent conditions (a more accurate description
of these interactions has been carried out, but only in
the case of monodisperse polymer brushes19,20). (ii) A
scaling description of the irreversibly adsorbed situation
described above has been given. However, as empha-
sized above, this work assumes a complete equilibrium
situation. Recent experimental studies show that, in
some cases, PDMS layers on silica can rearrange on
large time scales.21 Since rearrangement should strongly
affect the layer characteristics, an intermediate state
should be very different from the initial situation. This
provides new motivation for theoretical modeling of
arbitrary polymer layers.
In this paper, we present a general scaling description

of an arbitrary polymer interface. Our aim is to show
that any polymer layer, whatever the solvent conditions
may be, can be very simply described by its loop density
profile S, and that, in turn, this function appears to be
the proper tool for theoretical study of these interfaces.
This is done in three steps.
We first give a general description of a polymer

interface in terms of its loop density profile (section 2).
It is assumed that (a) the polymer chains are monodis-
perse (Nmonomers per chain) and (b) the chain density
at the interface is high enough for the different coils to
overlap. Three solvent conditions are considered: good
solvent (athermal, for simplicity), Θ solvent, and melt
(i.e., no solvent whatsoever).
We then compute the free energy of the layer (section

3). An interesting property of these systems emerges
from the consideration of their free energy if we consider
an equilibrium situation: equilibrium can be understood
in terms of a competition between entropy, which favors
loop polydispersity, and excluded volume interactions,
which favor dilute regimes corresponding to layers with
few loops per unit area. As a consequence, the equilib-
rium profiles of eqs 1 and 2 can be directly deduced from
the minimization of an effective free energy.
In section 4, we illustrate our approach with a specific

example: the case of polymer chains which are simul-
taneously grafted and reversibly adsorbed at a solid-
liquid interface. At low coverage, the structure of the
layer is not much affected by the grafting constraint,
and its extension for instance, is comparable with the
equilibrium result: L ∼ N3/5. In contrast, at high
surface coverage the chains are strongly stretched and
they expand much farther from the surface: L ∼N. The
transition is shown to be continuous.
Throughout our analysis, we will omit all the various

order-unity prefactors which may appear and concen-
trate on scaling relations.

2. Description of an Arbitrary Polymer Layer
In this section, we consider an arbitrary polymer layer

characterized by its loop density profile S (see Figure
1). We show that the extension, L, the variations of the
volume fraction, φ(z), and the absorbance, Γ (the number
per unit surface of monomers belonging to chains in
direct contact with the surface), can be simply expressed
as functions of S. Our results are used to find very
general scaling relations between L, Γ, and N.
To begin with, let us assume that each loop of 2n

monomers can be visualized as two separate “pseudo-
tails” of size n each (from now on, we shall make no
distinction between tails and pseudotails). Ultimately,
we shall appeal to the success of this model in describing
a wide range of situations as a justification of this
assumption, but this hypothesis is not trivial. Since
independent tails are not forced to join ends, a loop of
2nmonomers and two independent tails of nmonomers
behave differently. The main point is whether this
distinction is important enough to modify the conclu-
sions of a simple model in which it is neglected. Recent
work of Joanny and Semenov22 on reversibly adsorbed
layers suggests that the loops and the tails behave
differently, but their model in which loops and tails play
different roles leads to identical prediction concerning
the extension of the interface or the variations of the
volume fraction inside the layer. We shall return to this
question in section 3.
What remains now is the problem of describing the

structure of a very polydisperse polymer brush. In a
way similar to the Alexander-de Gennes analysis of
monodisperse polymer brushes,23,24 we suppose that the
tails are all stretched the same way: all nth monomers
of every tail of size larger than n are situated at the
same distance z from the surface. Therefore, n becomes
a function of z (which may be inverted).
From this equal stretching assumption,25 we can

relate the average distance between two tails, D(z), at
a height z to the average number of tails having more
than n monomers, S(n) (see Figure 2):

The conservation of monomers can be written as

where we have set z̆ ) dz/dn. Finally, the adsorbance
is obtained by counting monomers:

Note that eqs 3-5 are purely geometrical and, up to this
point, no consideration of the behavior of the polymer
chains is required. We now specify the solvent condi-
tions.

S(n) = 1/(a2n1/2) (2)

Figure 2. At a given altitude z, the areal density of pseudo-
tails is given by S(n(z)).

D(z) = S(n(z))-1/2 (3)

φ(z) = a3 S(n(z))/z̆ (4)

Γ = ∫1NS(n) dn (5)
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In the case of a good solvent, different chains repel
each other and, by analogy with a semidilute solution,26
the layer can be pictured locally as a close packing of
subunits, called “blobs”, whose size is of the order of the
mean distance between tails (see Figure 3): ê(z) = D(z).
At a scale smaller than ê, the chains are self-avoiding,
and the number of monomers g inside one subunit is
(ê/a)5/3 (to simplify the presentation, we have considered
the athermal limit where the excluded volume param-
eter v = a3). At a scale larger than ê, the tails are
stretched away from the surface, and thus dn/g = dz/ê.
Combining these two relations, we find that

Substituting into eq 4, we obtain

Equations 6 and 7 allow the determination of the
characteristics of the layer. In particular, integrating
formally eq 6 reveals the extension of the layer to be a
simple functional of the loop density profile:

In general, the computation of the volume fraction or
the extension for a given loop density profile S is
straightforward. To illustrate this point, consider power
law distributions of the form S(n) ∼ n-R, where the
exponent R satisfies the double inequality 0 e R < 3.
This form is particularly appropriate for equilibrium
layers (see Introduction), but it is interesting to realize
that the monodisperse brush situation (chains of equal
length,N, attached to a repulsive surface), with an equal
density σ, is characterized by S(n) ) σ, if 1 e n e N,
and S(n) ) 0 otherwise. Thus, this amounts to the
choice R ) 0. Equations 7 and 8 easily yield φ(z) ∼
z-2R/(3-R) and L ∼ N1-R/3. Furthermore, considerable
information may be obtained without ever knowing the
exact form of the loop density profile. For example, if
the exponent R lies in the range 0 e R < 1, scaling
analysis of eqs 5 and 8 leads to L = aN(a2S(N))1/3 and
Γ = NS(N). By elimination of S between these two
relations, we find

This is a remarkable result. While, as is expected, both

the extension L and the adsorbance Γ of a given layer
are strongly related to its inner structure (characterized
by the loop density profile), it is surprising that there
should be a scaling relation between these two quanti-
ties which is not dependent on the functional form of
S. Equation 9 implies, in particular, that two layers,
one made of grafted chains (R ) 0), and the other of
irreversibly adsorbed chainssin the sense of ref 1s(R
) 1/2), with the same quantity of material per unit
surface, have the same extension (within an order-unity
prefactor). This has been experimentally confirmed.16
Another interesting aspect of this analysis comes from
the appearance of a critical value R ) 1 (below which
eq 9 is valid). As mentioned in the Introduction,
reversibly adsorbed layers are characterized by an
exponent R ) 6/5 and thus do not obey relation 9. We
see that a “natural” distinction appears between two
kinds of behaviors: a brush type of behavior on one
hand, and a reversibly adsorbed type of behavior on the
other hand. This distinction is quite strong and holds,
for example, for the response to a mechanical probe such
as compression, as explained in the Appendix.
In the case of a Θ solvent, the layer can also be

visualized as a close packing of blobs whose size ê(z) is
of the order of the average distance between tails. In
this situation, however, repulsion between tails is due
to three-body interactions, and the chains are Gaussian
at a scale smaller than ê:26 g = (ê/a)2. Exploiting again
the elongation of the tails along the z-direction, we
obtain the equation governing their behavior: z̆ =
a(a2S(n))1/2. Then the volume fraction inside the layer
varies as

and the extension of the layer may be simply expressed
in terms of the loop density profile:

Scaling analysis of power law distributions for S can
be completed in the spirit of the good solvent case. For
example, we find that

if S is of the form S(n) ∼ n-R, with 0 e R < 1.
Finally, when there is no solvent, i.e., in a melt of

polymer chains, the tails are stretched along the z-
direction, but they overlap laterally. We still may
picture each tail as a string of non-overlapping blobs,
but the size of the subunits ê(z) is now proportional to
the square of the average distance between tails: ê(z)
= D2(z). The idea is that excluded volume effects are
screened, and thus, (a) two adjacent tails overlap
laterally and (b) chains are Gaussian locally. The size
of the “blob” (i.e., the length scale above which one chain
is stretched) is now determined by packing consider-
ations; this leads to a quadratic dependence, as first
shown in ref 27. Inside a blob, the chains are Gaussian,
and thus g = (ê/a)2, leading to a differential equation:

As is expected, the volume fraction (eq 4) is of the order
of unity, and the extension L = a3Γ (eq 5).

3. Energetics
We now proceed to find the free energy that is suitable

for describing the layer. For this purpose, it is conve-

Figure 3. By analogy with a semidilute solution, the layer
can be pictured as a close packing of blobs of size ê(z). At a
scale smaller than ê(z), the pseudotails behave as isolated coils.
At a larger scale, the pseudotails are extended along the
normal of the surface.

φ(z) = (a2S(n))1/2 (10)

L = ∫1NS1/2(n) dn (11)

L = aN(a2Γ/N)1/2 (12)

z̆ = a3S(n) (13)

z̆ = a(a2S(n))1/3 (6)

φ(z) = (a2S(n))2/3 (7)

L = ∫1NS1/3(n) dn (8)

L = aN (a2Γ/N)1/3 (9)
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nient to represent the surface as a lattice, each lattice
site, of size a2, being occupied by one (and only one)
pseudotail extremity. Let A be the total area. The free
energy F of this system of polydisperse interacting
pseudotails is the sum of four contributions: (a) the
osmotic contribution, which accounts for monomer-
monomer interactions, (b) the elastic energy of the tails,
(c) the entropy associated with the loop distribution
polydispersity, and (d) a surface energy describing the
interactions between the monomers and the surface. For
any given loop density profile and for any given set of
positions of the pseudotails on the lattice, at equilibri-
um, the elasticity exactly balances the osmotic energy,
and the two contributions are identical within an order-
unity prefactor. It is thus sufficient to estimate one of
them. In fact, the computation of contribution a, for
example, remains delicate since both the locations of the
pseudotails on the lattice and their conformations
fluctuate. We simplify the problem by estimating the
interactions between tails within the correct scaling
picture (accounting for correlations of monomers loca-
tion) but for their average position. This is a mean-
field approximation for the locations of the different
pseudotails, but we emphasis that we do properly
account for monomer-monomer interactions. We first
compute contributions a and b. Depending on the
solvent conditions, we calculate either the osmotic term
(for an athermal solvent or Θ solvent) or the elastic term
(for a melt). We then successively compute the entropy
and the surface terms.
In athermal solvent conditions, the osmotic pressure

inside the layer obeys the des Cloiseaux law:26 Π = (T/
a3)φ9/4, where T is the thermal energy. Taking advan-
tage of eq 7, the osmotic contribution to the free energy,
which is the integral of Π over the entire layer, may be
written

where â ) 11/6. Equation 14 still holds for other solvent
conditions but with different exponents: â ) 2 for Θ
solvents and â ) 3 for melts. The result for Θ solvents
is obtained by considering the appropriate scaling law
for the osmotic pressure: since three body interactions
are dominant, Π = (T/a3)φ3. In melt conditions, we
calculate the elastic energies of the different pseudo-
tails:

where En = T∫1n(z̆/a)2 dm represents the elastic energy
of a pseudotail of n monomers. After some manipula-
tions, it is easily confirmed that the elastic contribution
is of the form of eq 14, with â ) 3.
We now turn to find the entropy which describes how

many arrangements of the layer can exist on the surface
for a given loop distribution. With each given loop
density profile S is associated a large number Ω({S})
of ways to realize it. Since two pseudotails of equal sizes
are indistinguishable,

Equation 16 leads to a simple expression for the entropic
contribution to the free energy, Fent ) -(T/a2) ln Ω({S}).
In the continuum limit, Fent is given by28

Here, the Stirling approximation for computing factori-
als has been used, and we have set S0 ) ∫1N( - S′(n)) dn.
The quantity S0 is the total number per unit area of
pseudotails (also the number per unit area of monomers
in direct contact with the surface).
Finally, we describe the interactions between the

monomers and the surface by the following contribution
to the free energy:

where γ0 is the bare solid/liquid surface tension and γ1
is the solid/polymer surface tension (note that these two
quantities do not have the same dimensionality in eq
18. This choice, which has been discussed in great
detail by de Gennes,6 involves two approximations: (1)
interactions between the monomers and the surface are
short range, and (ii) interactions between monomers in
direct contact with the surface are weak.
Equations 14, 17, and 18 lead to the following expres-

sion for the effective free energy of the layer:

with â ) 11/6 (good solvent), â ) 2 (Θ solvent), or â )
3 (melt). We now explore some of the consequences of
this important equation.
Let us first consider reversibly adsorbed chains in

good solvent conditions. We presume that the surface
is fully covered by monomers, and thus S0 ) a-2. In
general, this quantity S0, which is the density of
monomers at the surface, has to be determined self-
consistently by minimization of the free energy: mono-
mers cover the surface because of favorable interactions
with the solid, but the coil they belong to pays entropic
penalties due to the increase of volume fraction and the
proximity of an impenetrable surface.30 However, we
will assume that the strength of the interactions be-
tween the monomers and the surface is such that the
density of monomers in the vicinity of the solid is of
order unity. This involves practically assuming an
effective gain per monomer in direct contact with the
surface of the order of T.6 Within this assumption, the
effective free energy of the layer is given by

After some algebra, it is easily confirmed that the loop
density profile which minimizes eq 20 is S(n) ∼ n-6/5.
We therefore recover, by an unusual but rather straight-
forward way, the result first proposed by de Gennes in
ref 9 and mentioned in the Introduction (see eq 1).
Moreover, our approach sheds light on the physics of
the reversibly adsorbed layer by suggesting that, at
fixed S0, the resulting structure can be understood as

Fent = TS0∫1N(-S′(n)
S0

) ln(-S′(n)
S0

) dn (17)

Fs = γ0 - γ1S0 (18)

F = γ0 - γ1S0 + (Ta2) ×
∫1N{(a2S(n))â + a2S0(-S′(n)

S0
) ln(-S′(n)

S0
)} dn (19)

F = (Ta2)∫1N{(a2S(n))11/6 + (-S′(n)) ln(-S′(n))} dn
(20)

Fosm = (Ta2)∫1N(a2S(n))â dn (14)

Fel = ( 1a2)∫1N(-S′(n))En dn (15)

Ω({S}) =
(∑n)1

N

-AS′(n))!
Πn)1

N (-AS′(n))!
(16)
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the best compromise between excluded volume interac-
tions and entropy of the set of loops.
By arguments that directly parallel those presented

above, we find that the loop density profile of reversibly
adsorbed layers in Θ solvent and melt are respectively
given by S(n) ∼ n-1 and S(n) ∼ n-1/2. The latter result
was first presented (again, using a completely different
approach) in ref 11 (see the Introduction, eq 2, and the
former could be deduced directly from ref 9 (see, for
example, ref 31).

4. Reversible Adsorption of End-Tethered
Polymer Chains
We now illustrate the general procedure presented

above for modeling a polymer interface with a specific
example: layers made of grafted chains which may
adsorb reversibly on the substrate (see Figure 4). This
situation may be of some relevance from both the points
of view of polymer brushes (grafted chains on a repulsive
surface) and of reversibly adsorbed layers. Since,
experimentally, polymer chains are rarely strongly
repelled by surfaces, preparing purely repulsive sub-
strates (suitable for building polymer brushes) often
involves a lot of physical chemistry work.32 In view of
this, one may want to know both qualitatively and
quantitatively the effects of adsorption on the charac-
teristics of a given brush. This could be used either to
monitor the modifications arising from a particular
treatment, or, having in mind a specific application, to
check a priori whether any treatment at all is worth-
while.
On the other hand, one may be primarily interested

in adsorbed layers. In this case, our analysis shows how
the structure of a reversibly adsorbed layer of chains is
modified when the chain density is increased from its
equilibrium value. This may be achieved in several
ways, including attaching a group of different chemistry
at the end of the chains and increasing the surface
chemical potential of the “anchor” with respect to that
in the bulk.33,34 To our knowledge, all previous theo-
retical studies of this situation (Alexander6 and Li-
goure35) predict a discontinuous “jump” (first-order
transition) between a low-density state, where the layer
has roughly the structure of an adsorbed layer, and a
high-density state, where it shows the features of a
brush and occurs when the chemical potential of the
anchor is increased from its bulk value.
Our starting point is the effective pseudo-free energy

of the layer, which may generally be written

where µ is a Lagrange multiplier. Equation 21 is a
modification of eq 20 (which, as explained above, as-
sumes that the density of monomers close to the surface

is of order unity) to include the constraint that the areal
density of chains, σ, is fixed:

(As usual, an alternative point of view for eq 21 is to
consider µ as the effective chemical potential of a chain
in the layer, and the pseudopotential can then be
identified with the Gibbs function.) After minimization,
we obtain a second-order Euler-Lagrange differential
equation of the form

which can later be solved for S to give

In eq 24,

The solution (eq 24) was based on the hypothesis that
N-1 , σ , 1.
The interpretation of eq 24 is quite simple (see Figure

5): the equilibrium loop density profile of a layer made
of grafted and adsorbed chains follows the profile of the
“purely” adsorbed layer close to the adsorbing surface
(eq 1), indicating that locally the layer is very similar
to an adsorbed layer. Then it saturates for a value σ,
indicating that locally the layer is brushlike, with an
areal chain density σ. Finally, it is truncated exponen-
tially. In physical terms, this last region accounts for
the polydispersity introduced in the pseudotail distribu-
tion through the formation of small adsorbed loops near
the surface (Figure 4). Although their structures are
very different (as shown by the difference in their loop
density profiles), both the adsorbed-like region and the
“polydisperse edge” have the same “size”, nc, in terms
of the arclength coordinate n. It is interesting to note
that nc is such that D = anc3/5, where D ) aσ1/2 is the
average distance between chains. In other words, from
the brush point of view, reversible adsorption affects the
structure of the layer in two marginal regions of same
size, roughly D: close to the surface, through the
formation of small adsorbed loops, and in the outer edge

Figure 4. Sketch of a layer made of grafted chains which may
adsorb reversibly on the surface.

Figure 5. Loop density profile of the layer made of grafted
and adsorbed chains. The gray line shows the result in the
simple case of grafted chains without adsorption (polymer
brush).

F = (Ta2)∫1N{(a2S(n))11/6 +

(-S′(n)) ln(-S′(n)) - µS(n)} dn (21)

∫1NS(n) dn ) Nσ (22)

S′′(n)
S(n)

) µ -(11/5)(a
2S(n))5/6 (23)

S(n) = 1/(a2n6/5) if 1 < n < nc

S(n) = σ
a2

(1 - e-(11/5)(N-n)/nc) if nc < n < N
(24)

nc = σ-5/6 (25)

µ = (11/5)σ
5/6 (26)
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of the layer, by introducing some polydispersity in the
tails lengths.
An interesting physical point emerges if one considers

formally the limit σ = N-1, which can be interpreted as
the “purely” adsorbed situation: the polymer coverage
is equal to its value at equilibrium, and we do not expect
any effect related to the grafting constraint. In this
limit, we find that nc = N5/6. This characteristic index
defines a characteristic length H = anc3/5, which scales
as

In the spirit of the interpretation given above, this
characteristic length separates a region dominated by
loops (z e aN1/2) and a region where we essantially find
tails (aN1/2 e z e aN3/5). This result was first found in
ref 22, using a completely different approach.
To find the variations of the volume fraction φ(z) along

the normal to the plane, one has first to solve eq 6 to
get n(z). Substitution of this result into eq 7 yields φ(z).
Specifically,

where 0 < u < 1 is a factor whose precise value is
dependent on all the various prefactors omitted above,
and L0 ) aσ1/3 N is the extension of the layer in the
absence of adsorption. To make things clearer, we have
also displayed in Figure 5 the result of our theory in
the absence of adsorption. In this situation, S = σ/a2 is
constant, and the volume fraction is thus a step func-
tion: φ = σ2/3 for 0 < z < L0. These correspond to the
results of Alexander and de Gennes.23,24 (This is not
surprising, since eqs 6 and 7 are the generalization of
their corresponding results to an arbitrary polydisper-
sity.) The quantity L = L0 - (1 - u)D is the height of
the layer made of grafted and adsorbed chains, and the
correction due to reversible adsorption of the chains is
thus of order D. In the outer fringe of the layer, the
volume fraction decreases like a parabola, as shown by
a Taylor expansion of eq 28:

As is clear from the calculation, the structure of the
layer is modified continuously as the density of chain
σ, or equivalently the chemical potential µ, is varied. If
the chain areal density is increased from 1/(a2N) (its
value in a layer made of reversibly adsorbed chains, as
shown by performing integral 5 with S being given by
eq 1, a kink progressively appears in the equilibrium
loop density profile for S(n) = σ/a2. This kink becomes
a plateau at higher areal chain densities, reflecting the
progressive transition to a brush type of layer. This
prediction of a smooth transition is in contrast with
previous models which predict a discontinuous behavior
(first-order transition), at a chain density σc = N-6/5 in
ref 6, and at σc = N-0.93 in ref 35. Our approach is
somewhat similar to the one used by Ligoure,35 but this
author postulates the loop density profile of the grafted
and adsorbed layer to be as follows: S(n) is constant if
n < n*, and S(n) ∼ n-6/5 if n > n* is a parameter chosen

such that the free energy of the layer is minimum. This
postulated function is significantly different from the
solution 24 and is thus not likely to describe correctly
the behavior of the layer.
Of course, our approach ignores the possibility that

two tails of the same size behave differently, and the
resulting picture may be affected by the relaxation of
this constraint. This is particularly true in the high-
density regime, where the layer is very “brushlike”. But
the present scenario is quite rich, and some features
may survive more accurate modeling. In particular, the
smoothness of the transition seems robust. This is
because, around the “transition point” (σ = N-1), the
layer is still very polydisperse, and, as argued in section
2 (see ref 25), our approximations are stronger in this
limit.

5. Conclusions

We have given a full scaling approach appropriate for
treating theoretically dense polymer layers (layers made
of overlapping chains). Within the framework of simple
approximations for the behavior of different loops and
tails, we have shown that the main features of dense
polymer layers can be very easily computed in terms of
the loop density profile S, such that S(n) is the number
(per unit surface) of loops and tails having more than n
monomers. In principle, our theory predicts (as func-
tions of S) the variations of the density, the height, the
adsorbance, and the effective free energy for various
solvent conditions (“good”, Θ, or melt).
In addition, we have shown that this approach may

be the basis of a unified picture of the existing models
for the properties of various polymer interfacial layers.
Indeed, both the results for reversibly and irreversibly
adsorbed layers can be recovered in a straightforward
manner from our theory. Furthermore, new insight into
the physics of these interfaces appears. An important
result is that, at fixed surface coverage, the structure
of equilibrium layers can be understood in terms of a
balance between excluded volume interactions and
entropy of the set of loops. Efforts are under way to
explore the consequences of these results, in particular
in the important case where the coverage is not fixed.
Another new result concerns the clear understanding

of the differences and analogies between reversibly
adsorbed layers, irreversibly adsorbed layers (as defined
in ref 11), and brushes. All these layers are character-
ized by loop profiles which are power laws, but their
features are very different. We have shown that,
depending on the comparison of the loop profile expo-
nent R with 1, we may distinguish between a brush type
of behavior (0 e R < 1) and a reversibly adsorbed type
of behavior (R > 1). Irreversibly adsorbed layers are
characterized by R ) 1/2, and thus exhibit a “pseudo-
brush” behavior.
That practical calculations are possible by using our

general method was shown by treating in detail the case
of layers made of grafted chains which may also adsorb
in good solvent. The features of this layer, such as the
softening of the density profile (by comparison with the
step function in the equivalent brush), have been
obtained, and a continuous variation of these features
is predicted as the chain coverage is increased. These
offer both qualitative and quantitative corrections to the
previous models and could be of some relevance from
an experimental point of view.
Several extensions of this work are envisaged in the

near future. Spherical geometries (polymers coating

H = N1/2 (27)

φ(z) = (a/z)4/3 if a < z < D

φ(z) = σ2/3 if D < z < L0 - D

φ(z) = σ2/3 (1 - e-(11/5)((L-z)/uD)3/4)2/3 if L0 - D < z <
L0 - (1-u)D

(28)

φ(z) = (11/5)2/3σ2/3((L - z)/uD)1/2 (29)
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spherical particles), which in applications to colloid
stabilization are perhaps the most important cases,2 can
be treated in the spirit of this article. This has been
done.29 The corresponding results will be reported
elsewhere. The force required to compress an arbitrary
layer is an important matter which deserves more
attention than what is given in the Appendix. By
analogy with other features, we expect a complete model
of the layer’s deformation under compression at fixed
S to be simply expressed as a function of S. Thus, an
interesting further study would concern situations
where S is not fixed but instead can very under
compression. This could be relevant for reversibly
adsorbed layers, for example, since some chains may
detach during mechanical probing.
We have given little attention to the experimental side

of the problem. Since the loop density profile is our
main tool, one should ask whether this quantity is
experimentally accessible. A possible direct measure of
the loop distribution was suggested by di Meglio36 and
involves an AFM. If one approaches an adsorbing tip
close enough to a coated interface, chains from the layer
may adsorb reversibly on the tip. If then the tip is
slowly removed from the surface, these bridging chains
will stretch and eventually detach. A careful record of
the variations of the force acting on the tip versus
distance should keep track of each individual detach-
ment as sudden “jumps” of the force. Within a simple
model relating the size of the loop to its characteristics
at the onset of detachment, one may then be able to
deduce the loop density profile of the layer. In the near
future, this technique could become a very useful and
elegant probe of clothed interfaces.
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ing discussions.

6. Appendix
In this Appendix, we show that an irreversibly ad-

sorbed layer (as defined in ref 11) also exhibits a brush
type of behavior under compression. We consider the
situation depicted in Figure 6, where an external agent
compresses a polymer layer with a neutral plate. We
presume that the presence of the plate only results in
imposing a pressure at the edge of the layer. Due to
several possible interactions between the chains and the
bare surface, it is more likely that this somewhat ideal
situation may be achieved by bringing two identical
layers into contact, rather than approaching one bare
surface to a polymer layer.3,37
A usual rule of the thumb is to decompose the layer

into an unperturbed region, near the surface, and a

region of constant density, at the edge (see Figure 6).
The idea is to compare the pressure induced at the edge
of the layer, Πop, with the osmotic pressure which exists
in the unperturbed layer, Π(z). Roughly speaking, if Πop
, Π(z), then locally the layer is not affected by the
compression; if Πop . Π(z), the pressure is imposed by
the operator, and the volume fraction is constant. In
doing so, we neglect the elasticity of the loops, and the
result is thus a crude approximation of the response of
the layer, but the essential physics remains, as shown
by more sophisticated calculations.38 The size of the
unperturbed region d is obtained by setting Πop ) Π(d).
Using the results of section 2 for loop profiles of the form
∼n-R, we easily obtain (for good solvents)

Implicit in eq 30 is the hypothesis that S is not modified
during compression and the layer is at equilibrium. The
thickness of the compressed region is given by the
conservation of monomers and scales as follows:

Turning to the overall thickness of the layer, L ) e + d,
we obtain

for small exponents (0 e R < 1). The underlying physics
of eq 32 is that any increment of pressure in two type of
works: (a) exposing some initially unperturbed mono-
mers to a state of higher density (first term), and (b)
increasing the density in the perturbed region (second
term). As is clear, however, from the comparison of the
two exponents, for moderate compression the second
term can soon be neglected, and we see that the
response of the layer becomes independent of R:

This means, in particular, that brushes and irreversibly
adsorbed layers exhibit the same behavior under com-
pression.
When R > 1, both contributions are comparable (eqs

30, 31), and we obtain

which is dependent on the inner structure of the layer.
Setting R ) 6/5 in eq 34 gives the relation Πop ∼ L-3,
first proposed by de Gennes to model the response of
reversibly adsorbed layers to compression.37
In this Appendix, we have shown that, depending on

the density of the layer, compressing the layer may not
always result in probing the inner structure of the layer.
The idea is that the perturbed region of the layer, whose
structure is independent of the characteristics of the
layer, may screen this contribution and become the
dominant response of the interface. In the case of layers
whose loop density profiles are power laws, the critical
value of the exponent is 1, and the distinction between
a brush type of behavior and a reversibly adsorbed type
of behavior emphasized in section 2 still holds. It should
be noted that this distinction cannot be generalized to
curved interfaces. Reference 14 shows, for example,
that two colloidal particles coated with polymer layers

Figure 6. (a) Schematic representation of a polymer layer
under compression. (b) We simplify the problem by assuming
that there is one unperturbed region (close to the surface) and
one region of constant density (at the edge).

d ∼ Πop
-2(3-R)/9R (30)

e ∼ Πop
-4/9 if 0 e R < 1

e ∼ Πop
-2(3-R)/9R if R > 1 (31)

L ∼ Πop
-2(3-R)/9R + Πop

-4/9 (32)

L ∼ Πop
-4/9 (33)

L ∼ Π-2(3-R)/9R (34)
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and brought into contact display different behavior
when the layer is made of grafted chains or irreversibly
adsorbed chains. This is because, in spherical geometry,
the perturbed loops can take advantage of the unper-
turbed side of the particle to rearrange and thus are
not forced to stay in the region of high density. As a
consequence, the contribution of the perturbed region
to the response is weaker, and, in effect,29 can be
neglected in the case of irreversibly adsorbed layers.
Clearly, the calculations presented in this Appendix

remain at the level of arguments, but we believe it may
offer some useful qualitative insights into the full
problem.
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(15) Aubouy, M.; Raphaël, E. Macromolecules 1993, 27, 5182.
(16) Auvray, L.; Auroy, P.; Cruz, M. J. Phys. I 1992, 2, 943.
(17) Aussere, D. J. Phys. Fr. 1989, 50, 3021.
(18) Milner, S. T.; Witten, T. A.; Cates, M. E. Macromolecules

1989, 22, 853.
(19) Milner, S. T.; Witten, T. A.; Cates, M. E.Europhys. Lett. 1988,

5, 413; Macromolecules 1988, 21, 2610.
(20) Skvortsov, A. M.; Gorbunov, A. A.; Pavlushkov, I. V.; Zhulina,

E. B.; borisov, O. V.; Priamitsyn, V. A. Vysokomol. Soedin. A
1988, 30, 1615. Zhulina, E. B.; Priamitsyn, V. A.; borisov,
O. V. Vysokomol. Soedin. A 1989, 31, 185.

(21) Leger, L., private communication.
(22) Joanny, J.-F.; Semenov, A. N. Europhys. Lett. 1995, 29, 279.
(23) Alexander, S. J. Phys. Fr. 1977, 38, 983.
(24) de Gennes, P.-G. Macromolecules 1980, 13, 1069.
(25) Note that this “equal stretching” assumption seems to be less

controversial in the case of polydisperse brushes (on the role
of this assumption for monodisperse brushes, see refs 19 and
20). This is because the tails stretch away from the surface,
and then all shorter chains will tend to have their free ends
closer to the surface than that of any longer chains.18 In the
continuum limit, this seggregation effect strongly suggests
that z can be considered as a function of n.

(26) de Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell
University Press: Ithaca, NY, 1985.

(27) Aubouy, M.; Fredrickson, G. H.; Pincus, P.; Raphaël, E.
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