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The surface of a thin liquid film with a nonconstant curvature is unstable, as the Laplace pressure drives

a flow mediated by viscosity. We present the results of experiments on one of the simplest variable

curvature surfaces: a thin polymer film with a step. Height profiles are measured as a function of time for a

variety of molecular weights. The evolution of the profiles is shown to be self-similar. This self-similarity

offers a precise measurement of the capillary velocity by comparison with numerical solutions of the thin

film equation. We also derive a master expression for the time dependence of the excess free energy as a

function of the material properties and film geometry. The experiment and theory are in excellent

agreement and indicate the effectiveness of stepped polymer films to elucidate nanoscale rheological

properties.
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The properties of polymers and indeed all molecules in
thin films and at interfaces continue to stimulate debate.
The apparent increased mobility of polymers at interfaces
in both the liquid [1,2] and glassy states [3], their structural
properties [4,5], as well as the effects of preparation and
treatment history [6–9] are areas of concerted effort. While
length scales of these systems are frequently just a few
molecular diameters, the physics governing their liquid
state evolution is quite general and can be used to model,
for example, geophysical flows [10].

When a flat liquid film is in contact with a substrate of
lower surface energy, a hole can nucleate to expose some of
the underlying surface. This phenomenon induces a non-
constant curvature of the film driven by interfacial tension
and leads to a decrease of the total free energy as the hole
grows. This process is called dewetting [11,12]. There have
been many studies concerned with details of the shape
and evolution of the rim which collects the dewetted
fluid [5,13–19], and much has been learned about and
from the process of turning a flat film into a collection of
droplets.

Several techniques that have been used [20–26] to
provide insight into the aforementioned problems [1–9]
take the opposite approach. They rely on the property that
curved interfaces have more surface area than flat ones.
Such curved surfaces can be driven to flatten by the
surface tension, �, but are mediated by the viscosity, �.
In several of the surface tension-driven flow techniques,
the nanoscale topography is imprinted using a square
wave pattern that varies in one lateral dimension only
[23–26]. In these studies, the authors typically consider
the evolution of the amplitude of the perturbation, rather
than that of the profile shape. As in many of the dewetting
studies, this Letter is concerned with the details of a
capillary-driven flow profile, but in a different geometry:
a stepped film.

In a previous contribution [22], we explained how to
prepare the simple geometry of stepped polymer films. The
samples are prepared as schematically shown in Fig. 1(a).
They are comparable to the square wave patterns discussed
above [23–26] in that the height is a function of only one
spatial dimension and time, h ¼ hðx; tÞ. They are different
in that they have only one height step. This two-
dimensional geometry allows us to study the broadening
in the region over which the height changes from h1 to
h1 þ h2 (see Fig. 1) in isolation, rather than having to
consider the flow from neighboring steps in a periodic
geometry. With the use of scaling laws, it was shown that
by measuring a particular lateral length scale, one could
measure the relative viscosity [22]. In this Letter, we
provide a theoretical treatment of the governing thin film
equation which is in agreement with the measured height
profiles over a wide range of thickness combinations and
over several orders of magnitude in viscosities. We explain
in detail the dependence of the energy dissipation on the
film geometry and capillary velocity, �=�.
Films were prepared by spin coating polystyrene

(PS) dissolved in toluene onto two types of substrates:
1� 1 cm2 Si wafers (University Wafer) rinsed with ultra-
pure water (18:2 M�cm, Pall, Cascada LS), methanol,
and toluene (Fisher Scientific, Optima grade), as well as

FIG. 1 (color online). (a) Schematic of the as-prepared
samples. (b) After annealing above the glass transition tempera-
ture, the region of transition between the two terrace heights
broadens, and a flow profile can be measured.
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freshly cleaved mica substrates (Ted Pella, Inc.). The PS
molecular weights were Mw ¼ 15:5, 55.5, 118, and
192 kg=mol with polydispersity indices � 1:07 (Polymer
Source, Inc.). The film thicknesses ranged from 30 to
200 nm. These heights were always much larger than the
typical size of molecules making up the films. The as-cast
samples were annealed at 130 �C in a vacuum oven
(10�5 mbar) for 24 h (more than 2 orders of magnitude
greater than the longest relaxation time of the largest
polymer used [27]).

The preparation of stepped films proceeded as detailed
previously [22]. Briefly, PS films with thickness h2 on a
mica substrate were floated onto ultrapure water and trans-
ferred to a Si wafer. After drying, these wafers were split
along a crystal axis. The split films were again floated onto
water and picked up using a Si wafer coated with a PS film
of height h1, thus creating a bilayer with step size h2 (see
Fig. 1). Samples are described as having geometry fh1; h2g.
All sections of film observed in this study had straight
edges as viewed with optical and atomic force microscopy
(AFM, Veeco Caliber) for distances of a minimum of
50�m. Figure 2(a) at t ¼ 0 illustrates an example of the
initial stepped profile; see also Ref. [22].

Prior to measurement of each profile evolution, h2 was
measured (as with all heights reported) using AFM. Then,
the film was annealed for 10 min at 140 �C on a hot stage
(Linkam) using a heating rate of 90 �C=min in air [28].
After cooling to room temperature (� 40 �C=min to below
the glass transition, Tg � 100 �C), the step profile was

measured. Given hðx; tÞ as the distance between the
substrate-polymer and air-polymer interfaces, hðx; tÞ � h1

is the quantity measured. For the 55.5, 118, and
192 kg=mol samples, additional annealing for 10 min pe-
riods was performed, with the profile evolution obtained at
room temperature. After a final measurement of the height
profile, a scratch in the PS film was made down to the
substrate to measure h1.
Figure 2(a) shows the time evolution (10 � t �

300 min ) of three stepped polymer films with h1 � h2 �
100 nm, each with a different molecular weight. On each
stepped film, there is a prominent ‘‘dip’’ on the thin side of
the film and a ‘‘bump’’ on the thick side, which is consis-
tent with our earlier observations [22] and can also be seen
in the long wave limit of the data presented by Rognin et al.
[25]. The evolution proceeds such that positions of the
profile extrema are separated over wider distances: the
film flattens with time.
The flow profile can be understood from the Laplace

pressure, which arises due to curvature at the fluid interface
[29]; the range of heights considered here allows us to
neglect gravitational [10] and disjoining [30] pressures.
Assuming that the height gradients are small, the lubrica-
tion approximation applies, and the local Laplace pressure
is given by pðx; tÞ � ��@2xh. Though the as-prepared
stepped films have steep gradients, they also contain large
curvature gradients in the same regions. These high-
gradient regions then flow quickly compared to the experi-
mental annealing times, and the lubrication approximation
is valid for all experiments presented here. As a stepped
film levels, the bump represents a region of high pressure
relative to the flat regions on the thick side of the film,
while the dip has a low pressure relative to flat regions on

FIG. 2 (color online). (a) Height as a function of position and time (10 � t � 300 min ) for three stepped films with molecular
weights as indicated. From left to right, fh1; h2g ¼ f106; 114g; f89; 89g, and f101; 99g nm. The inset shows a detail of the ‘‘dip’’ region
for the 118 kg=mol sample. (b) Scaled height as a function of scaled position, according to Eq. (2); the inset shows the same region as
the inset of panel (a) in scaled variables. Whereas the volume constraint uniquely determines the origin, the 192 and 55:5 kg=mol data
have been shifted both horizontally and vertically in both (a) and (b) for clarity.
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the thin side. Thus, there are pressure gradients along the
region of transition between h1 and h1 þ h2, and the flow
continues.

To understand the data of Fig. 2(a) quantitatively,
we combine the lubrication approximation and the Stokes
equation of viscous flows that leads [31–33] to @xp ¼
�@2zv, where vðx; z; tÞ is the horizontal velocity and z is
the vertical coordinate. Since the longest relaxation time of
any polymer used here is of order 100 s, and all leveling
times are significantly longer than this time, viscoelastic
effects can safely be neglected. Assuming no slip at the
solid-liquid interface and no stress at the liquid-air inter-
face gives a Poiseuille velocity profile along z. Invoking
conservation of volume and using the Laplace pressure
introduced above leads to the thin film equation

@thþ �

3�
@xðh3@3xhÞ ¼ 0: (1)

This differential equation can be nondimensionalized by
letting H ¼ h=h2, X ¼ x=x0, and T ¼ �h32t=3�x

4
0, where

x0 is a typical horizontal length scale of the problem [31].
Furthermore, introducing the variable

U ¼ X

T1=4
¼

�
3�

�

�
1=4 x

ðh32tÞ1=4
; (2)

one can show that self-similar solutions of the first kind of
the form HðX; TÞ ¼ FðUÞ exist [10,34–36]. Using a nu-
merical scheme [37,38], we have shown that this self-
similarity is satisfied for times T * 10�4 for a profile with
h1 ¼ h2. We have furthermore verified that the self-
similarity is not sensitive to the initial height profile,
provided that the heights at U ¼ �1 are constant and
different. Therefore, if the interface profile is self-similar,
a rescaling of the horizontal axis must collapse all of the
experimental data. In Fig. 2(b), we show the same data as in

Fig. 2(a) but plotted as a function of x=ðh32tÞ1=4. Having done
so, we see that the data for all three molecular weights
do collapse onto three individual curves, thus demonstrat-
ing the self-similarity of the evolution through time.
Examining the scaled curve for the 192 kg=mol PS in
Fig. 2(b) closely, one can see that the early time data do
not collapse perfectly onto one single curve. This result is
due to the fact that it takes longer times to reach the self-
similar solutions to Eq. (1) for higher molecular weights, at
a given temperature.

In the previous rescaling, the horizontal length scale
characterizing the transition between undisturbed film
heights is different for each of the three data sets. Since
the samples all started with the same initial condition, they
have different leveling speeds because the viscosity varies
withMw. To obtain precise measurements of these leveling
speeds, we numerically solve the dimensionless form
of Eq. (1) with a stepped initial condition of aspect
ratio r ¼ h1=h2. We then fit the computed self-similar
profile, FrðUÞ, to the corresponding rescaled experimental

profile. Figures 3(a) and 3(b) show the rescaled measured
profiles for two 15 kg=mol PS stepped films with different
fh1; h2g values as well as the corresponding fits to the
numerical solutions of Eq. (1) [38]. Despite the initial
transient flow not described by the lubrication approxima-
tion, all experimental profiles presented here approach the
self-similar solutions obtained from Eq. (1). In the fitting
procedure, the only free parameter is a horizontal stretch of

the computed profile given by the factor ð�=3�Þ1=4 accord-
ing to Eq. (2). This procedure thus yields a measured value
of the capillary velocity �=�. Using � � 30 mJ=m2 [39]
for all polymers here, we get � ¼ 7:3� 103, 1:4� 105,
1:1� 106, and 9:1� 106 Pa s for Mw ¼ 15:5, 55.5, 118,
and 192 kg=mol PS at 140 �C. These viscosities follow the
expected molecular weight dependence of the polymer
melt viscosity [40] and are in agreement with viscosities
measured in the bulk [27]. We have measured �=� for nine
additional 15:5 kg=mol PS stepped films all with different
fh1; h2g values. We find that the value obtained is indepen-
dent of fh1; h2g, and the ratio of the standard deviation to
the mean is 0.12.
Having exhibited the self-similarity of the profiles and

having set up a robust method to measure the capillary
velocity, we now turn to the study of the dissipation law in
stepped films. The excess free energy per unit length along
the dimension of invariance, �F , is dominated by the
interfacial contribution. For small slopes

�F ¼ ��L � �

2

Z
dxð@xhÞ2; (3)

FIG. 3 (color online). (a) Rescaled measured profiles for a
15 kg=mol PS stepped film with fh1; h2g ¼ f30; 193g nm after
10 min of annealing at 140 �C; (b) an identically annealed
stepped film with fh1; h2g ¼ f174; 32g nm. The lines in (a) and
(b) are horizontally stretched numerical solutions from Eq. (1)
using Refs. [37,38]. (c) Relative excess contour length of the
data in Fig. 2 as a function of time; see Eq. (3).
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where �L is the excess contour length of the profile with
respect to the flat limit at infinite time. In Fig. 3(c), we plot
the relative excess length as a function of time for the three
samples of Fig. 2(b). It is evident that the individual data
sets obey a power law in time. Referring also to the two
stepped films shown in Figs. 3(a) and 3(b), we see that the
contour lengths of these two profiles are not identical
despite having been annealed under the same conditions.
Therefore, there are temporal and geometrical dependen-
cies on the energy dissipation.

In the following, we develop a theoretical model in order
to understand the results of Fig. 3. Making the quantities in
the integrand of Eq. (3) dimensionless as presented above
and invoking the self-similarity of the profile, we find that
the relative excess length remaining after time t satisfies

�L ¼ CðrÞ
�
�h52
�t

�
1=4

; (4a)

with CðrÞ ¼ 31=4

2

Z
dU½F0

rðUÞ�2; (4b)

where CðrÞ is determined by the sample geometry through
the dimensionless self-similar profile FrðUÞ.

The stepped film problem contains three relevant com-
binations of heights: h2 for the step height, which provides
the typical driving force for leveling, as well as h1 and
h1 þ h2 for the thicknesses of the thin and thick regions of
the film. Thus, having already extracted the h2 dependence
in Eq. (4a), the simplest ansatz for a height dependence of
CðrÞ is a power law of the form

CðrÞ ¼ Cð1Þr�
�
1þ r

2

�
�
: (5)

This scaling expression connects the case of arbitrary
aspect ratio, r, to the r ¼ 1 geometry; normalization to
r ¼ 1 is ensured by the factor of 2. In order to determine
the two exponents, we consider the limit r 	 1, where the
step is a small perturbation of the flat film. In this limit,
Eq. (1) can be linearized and solved analytically and we

find CðrÞ � �r�3=4, where � � 0:16 [41]. By comparison
to Eq. (5) when r 	 1, we get �þ � ¼ �3=4 and
� ¼ log½Cð1Þ=��= logð2Þ. Then, using the numerical solu-
tions of Eq. (1) presented above, we calculate Cð1Þ � 0:12
and thus � � �0:42. Finally, we obtain a master expres-
sion for the relative excess contour length,

�L

h2
¼ �

�
h2
h1

�
3=4

�
1þ h2

h1

�
�
�
�h2
�t

�
1=4

: (6)

Figure 4 shows the relative excess lengths for all samples
and times presented in this study as a function of the
combination of fh1; h2g, �=� and t suggested by Eq. (6).
The solid line corresponds to the theoretical prediction of
Eq. (6) with no free parameter. The agreement between the
data and Eq. (6) validates the dissipation law as well as
the general scaling to the r ¼ 1 symmetric case, within
the range of our experimental data. As discussed above, the

dissipation law is modified for t < 100 min for the
192 kg=mol PS, where self-similarity or the lubrication
approximation may not be valid. Although we have not
accessed this limit here, we expect deviations when r ! 0,
for which the dependency on h1 may differ.
In conclusion, we have demonstrated that the thin film

equation captures the time evolution of stepped polymer
films for a wide range of aspect ratios and material prop-
erties. With the use of a numerical solution of this equation,
it is now straightforward to precisely measure the capillary
velocity of any nonvolatile fluid prepared as described. We
further demonstrated the self-similarity of the evolution of
the profiles. Finally, details of how the excess surface
energy is dissipated by viscosity over time have been
obtained. We have determined that the surface energy
decreases with a �1=4 power law in time. The rate at
which energy is dissipated depends on the capillary veloc-
ity and on the heights of the initial step. In particular, we
have shown through a master expression that the evolution
of any stepped film can be rescaled to the h1 ¼ h2 sym-
metric step.
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Capillarity and Wetting Phenomena: Drops, Bubbles,
Pearls, Waves (Springer, New York, 2003).

[30] R. Seemann, S. Herminghaus, and K. Jacobs, Phys. Rev.
Lett. 86, 5534 (2001).

[31] L. Stillwagon and R. Larson, J. Appl. Phys. 63, 5251
(1988).

[32] A. Oron, S. Davis, and S. Bankoff, Rev. Mod. Phys. 69,
931 (1997).

[33] R. Craster and O. Matar, Rev. Mod. Phys. 81, 1131 (2009).
[34] G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate

Asymptotics (Cambridge University Press, Cambridge,
England, 1996).
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