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Abstract. Particle–particle correlation functions in ionic systems control many
of their macroscopic properties. In this work, we use stochastic density functional
theory to compute these correlations, and then we analyze their long-range beha-
vior. In particular, we study the system’s response to a rapid change (quench)
in the external electric field. We show that the correlation functions relax diffus-
ively toward the non-equilibrium stationary state and that in a stationary state,
they present a universal conical shape. This shape distinguishes this system from
systems with short-range interactions, where the correlations have a parabolic
shape. We relate this temporal evolution of the correlations to the algebraic
relaxation of the total charge current reported previously.
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1. Introduction

In many-particle systems with pair interactions, the transport properties, such as viscos-
ity or conductivity, are related to the pair correlation in non-equilibrium steady states.
The conductivity of electrolytes, for instance, has been explored with this approach in
the early works of Debye and Hückel [1] and later Onsager [2]. There, the correlations
between the ions when the electrolyte is submitted to an external electric field give rise
to a negative correction to the Nernst-Einstein conductivity [2, 3]. Following the same
approach, Onsager and Fuoss computed the effect of the interactions between ions on
the viscosity of electrolytes [4]. Apart from electrolytes, the viscosity of a suspension of
hard spheres has been deduced from the particle correlations [5]. In all these examples,
the difficulty lies in calculating the pair correlations; deducing the transport properties
from them is straightforward.

Stochastic density functional theory (SDFT), or Dean–Kawasaki equation [6, 7],
has recently emerged as a systematic tool to compute the correlations in systems with
pair interactions under the Debye–Hückel, or random phase, approximation [8]. This
framework has been used to generalize the Onsager and Kim results to arbitrary spatial
dimensions [9], compute the viscosity of a soft suspension [10] and account for the finite
ion size in the viscosity of an electrolyte [11]. It has also allowed to compute the thermal
Casimir interaction between plates containing Brownian charges out of equilibrium [12,
13] or between dielectric slabs confining a driven electrolyte [14, 15]. SDFT has also
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been coupled with fluctuating hydrodynamics, providing a stochastic field theory for
the ionic densities and the flow, to account for hydrodynamic interactions between the
particles [16, 17]. This approach has led to advancements such as accounting for finite
ion size using modified interaction kernels, yielding better quantitative predictions of
the conductivity at high ionic concentrations [18–20].

SDFT has thus been widely used to compute the pair correlations in electrolytes
and deduce macroscopic transport coefficients from them. The correlations themselves,
however, have received far less attention. At equilibrium and under the Debye–Hückel
approximation, the correlations between ions in an electrolyte take a Yukawa form and
decay exponentially. On the contrary it was noted that they were long-ranged out of
equilibrium [14]. This situation is reminiscent of driven binary mixtures with short-range
interactions, with an overdamped or an active dynamics, which also display algebraic
correlations with a universal parabolic shape [21, 22]. This raises the question of the
shape of the correlations in a driven electrolyte, and in particular of the effect of the
long-ranged electrostatic interactions.

Moreover, an algebraic relaxation of the current in an electrolyte following a sud-
den switching on of the external field has been found recently [23]. Conversely, it has
been found that the current relaxes exponentially following the sudden switching off
of the external field. This peculiar behavior extends the question of the shape of the
correlations: what is the shape of the correlations in the transient regime separating
equilibrium and a non-equilibrium steady state (NESS)? How does the shape of the
correlations explain the algebraic or exponential relaxation of the electric current?

In this work, we use SDFT with hydrodynamic interactions [9, 17] to investigate the
dynamics of ionic correlations in a bulk electrolyte following a sudden change in the
external field. We first analyze the stationary correlations in NESS and show that, at
large distances, the correlations adopt a conical shape, which corresponds to an aniso-
tropic Poisson equation. We then address the transient dynamics of the correlations as
the system evolves from equilibrium to NESS and back, and find that an anisotropic dif-
fusion equation governs their evolution. This diffusive scaling of the correlations explains
the algebraic relaxation of the macroscopic current observed when going from equilib-
rium to NESS [23], and its exponential relaxation from NESS to equilibrium.

The outline of this article is as follows. In section 2, we present the model system and
derive general expressions for the ionic correlations; the expressions are later reduced
to the binary symmetric electrolyte case. In section 3, we analyze the large distance
behavior of the correlations in the NESS and derive a universal shape for them. In
section 4, we expand the analysis to the temporal response of the correlations to a
quench in the driving field at large distances. In section 5, we reexamine the problem
at the level of the density and charge fluctuations to explain the algebraic temporal
relaxation of the charge current.

2. Model

We model an electrolyte as a system of charged Brownian particles of different species [9,
14, 16, 18]. The particles move in a homogeneous three-dimensional solution and are
subjected to a uniform external electric field with a time-dependent amplitude E(t) =

https://doi.org/10.1088/1742-5468/adb4ce 3
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E(t)êx, where êx is the unit vector along the x axis. The particles interact via the
electrostatic potential and are advected by the flow in the solution, which is generated
by the forces transmitted by the particles on the solvent. We denote ρ̄α the average
density of the particles of the species α, κα their mobility, and qzα their charge, with q
being the elementary charge. We assume that the system is electroneutral,

∑
α zαρ̄α = 0.

We describe the evolution of the density field ρα(x, t) of the species α using SDFT [7,
9] with hydrodynamic interactions [16, 17]. The density fields are defined as ρα(x, t) =∑

i δ(X i(t)−x), where X i(t) is the position variable of the particle i in the species α,
and the dynamics of ρα is given by

ρ̇α =−∇ · jα, (1)

jα = uρα−Tκα∇ρα+καραfα+
√

καTραζα, (2)

where u(x, t) is the velocity field of the solution, T is the temperature (we set the
Boltzmann constant to kB = 1) and fα(x, t) is the force acting on the particles of the
species α. The noise term ζ(x, t) is a Gaussian white noise with the correlation

⟨ζα (x, t)ζβ (x
′, t ′)⟩= 2δαβδ (x−x ′)δ (t− t ′) . (3)

We use the Itô convention for the multiplicative noise in equation (2) and throughout
this article [7, 24].

The force on the particles of the species α is the sum of the force exerted by the
external field and the force due to pair interactions

fα = zαqE−
∑
β

∇Vαβ * ρβ, (4)

where Vαβ(x) = q2zαzβ/(4πεr) is the electrostatic interaction, with r = |x|, ε the dielec-
tric permittivity of the solvent, and * the convolution operator.

We assume that the fluid velocity field u(x, t) satisfies the fluctuating Stokes
equation for incompressible fluids [25] (section 3.2)

∇·u= 0 (5)

η∇2u−∇p=−
∑
α

ραfα−
√
ηT∇·

(
ν +νT

)
, (6)

where ν(x, t) is a Gaussian noise tensor field with correlation function

⟨νij (x, t)νkl (x ′, t ′)⟩= δikδjlδ (x−x ′)δ (t− t ′) . (7)

In particular, we are interested in the evolution of the density-density correlation
function ⟨ρα(x, t)ρβ(x ′, t ′)⟩ when the electric field is suddenly switched on (E(t) =
E0H(t), where H (t) is the Heaviside function), or off (E(t) = E0H(−t)). In the first
case, the system goes from equilibrium with E =0 to NESS with E = E0; in the second
case, it relaxes from NESS to equilibrium.

https://doi.org/10.1088/1742-5468/adb4ce 4
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Moreover, we analyze the total charge current J = q
∑M

α=1 zα⟨jα⟩. Using the elec-
troneutrality of the system and after discarding terms of third order in the fluctuations,
one finds [23]

J = σ0E −
∑
α,β

qzακα

ˆ
dx∇Vαβ (x)Cαβ (x)+

∑
α,β

q2zαzβE

ˆ
dxO (x)Cαβ (x) . (8)

The correction to the bare current, σ0E, with σ0 = q2
∑

α z
2
ακαρ̄α is the sum of two

contributions. The first term involves the electrostatic potential V αβ, and is referred to
as the electrostatic correction. The second term is called the hydrodynamic correction
and it involves the Oseen tensor O and the external field E .

For completeness we repeat here the approach developed in [9, 23]. The SDFT model
presented can be reduced, under the linearization of the field equations, to the following
equation for the density fluctuations nα = ρα− ρ̄α. In Fourier space, the dynamics of nα

takes the form

˙̃nα =−καTk
2ñα− iκαqzαE ·kñα−καρ̄αk

2
∑
β

Ṽαβñβ +
√
καT ρ̄αik · ζ̃α. (9)

Equation (9) allows to formulate an equation for ⟨ñα(k, t)ñβ(k
′, t)⟩= (2π)dδ(k+

k ′)C̃αβ(k, t), the density-density correlation functions

˙̃C = 2TR−RAC̃ − C̃A*R, (10)

where Rαβ(k) = δαβ ρ̄ακαk
2 and

Aαβ (k) = δαβ
T

ρ̄α

(
1+ i

zαqE ·k
Tk2

)
+ Ṽαβ. (11)

We can solve equation (10) exactly for an external field quench since it is a set of
linear ODEs with constant coefficients in the interval [0, t].

To further explore the general formulas presented here, we focus on the specific case
of binary symmetric electrolytes. An ionic solution classified as such is one in which
there are only two species of particles with opposite charges and the same mobility. This
simplification is of interest for two main reasons. First, many ionic solutions in practical
use are very close to binary symmetric solutions [26]. Secondly, this simplification allows
us to manipulate analytically and derive simple form expressions that still capture the
system’s global behavior.

A binary symmetric electrolyte, where both species have the same mobility and
charge satisfy α= {+,−}, z+ =−z− = 1, ρ̄α = ρ̄, and κα = κ. We nondimensionalize

equation (10) by setting C̃ = ρ̄c̃ and k = s/λD where λD =
√
Tε/(2q2ρ̄) is the Debye

length. Then we rescale time by the Debye time tD = λ2
D/(κT ), t= tDτ . We rewrite the

external field to separate the magnitude from the time dependence E(t) = E0g(t) and
introduce the dimensionless field f = qλDE0/T . The rescaled correlation cαβ(τ) follows

˙̃c= 2s2−ωc̃− c̃ω*, (12)

where we have introduced the matrix ωαβ(s) = δαβ
(
s2+ izαfs∥

)
+

zαzβ
2 .

https://doi.org/10.1088/1742-5468/adb4ce 5
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Figure 1. The correlation function in the non-equilibrium stationary state for dif-
ferent values of the normalized external field f. Panels (a), (b), (c) are the anion-
cation correlation c−+, and panels (d), (e), (f) are the equal charge correlation cαα.
One can observe that far from the origin, a cone develops and that at vanishing
fields, the angle of the cone reaches a finite value, as predicted in equation (19).
Surprisingly, the long-range shape of any ion–ion correlation function is the same.
In dashed black line is the prediction of equation (19).

3. Correlations in electrolyte systems—long range behavior at NESS

In this section, we analyze the structure of the correlations between different ions at
scales larger than the Debye length. The correlation elements in Fourier space for binary
symmetric electrolytes can be calculated using equation (12). In the stationary state
case, as shown in [9], the equation reduces to a set of algebraic equations to which the
solution is

c̃(s) =
s2

2(1+2s2)
(
s2+ s4+ f 2s2∥

)
×
(

1+4s2+4s4+4f 2s2∥ 1+2s2− 2if s∥
1+2s2+2if s∥ 1+4s2+4s4+4f 2s2∥

)
. (13)

In figure 1 one can see the NESS correlation elements in real space for different
values of the dimensionless field, obtained from the numerical Fourier inversion of
equation (13). A clear conical structure with respect to the field direction is visible
for both c++ and c−+. The head angle of the cone decreases with the electric field,
but does not reach π/2 as the field goes to zero. Differences between c++ and c−+ are
manifested only around the origin at distances comparable with λD.

https://doi.org/10.1088/1742-5468/adb4ce 6
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3.1. Discontinuity at small wave number

Examining c̃(s), we see that there is a discontinuity at the origin, since the limit is
different upon approaching the origin from the direction perpendicular or parallel to
the electric field

c̃αβ
(
s∥ = 0,s⊥

)
=

s⊥→0

1

2
, c̃αβ

(
s∥,s⊥ = 0

)
=

s∥→0

1

2(1+ f 2)
. (14)

The fact that the Fourier transform of the correlation function is not continuous at
the origin usually indicates an algebraic decay in real space. To determine the long-
range properties of the correlation function, we can separate this discontinuity from
the full expression. By doing so, we are left with a term called the singular part c̃sing,
which encompasses the discontinuity and accounts for the long-range behavior in real
space, and the rest, namely c̃− c̃sing, which is more regular at the origin and hence, its
contribution decays faster in real space. Note that the singular part is defined up to
a regular function. We can extract the discontinuity from equation (13) by discarding
higher powers of s⊥ and s∥ for the numerator and the denominator separately. In this
way, we find the singular part, which is identical for all correlation elements

c̃sing =
s2

2
(
s2+ f 2s2∥

) . (15)

One can verify that subtracting this term from the correlation elements regularizes the
behavior at the origin, and the regularized term goes to 0 in the s→ 0 limit. Therefore,
the inverse Fourier transform of the singular part dominates the behavior of the correl-
ation elements at long distances in real space. We can invert the Fourier transform of
the singular part and express it in terms of the Green function of the Poisson equation
G(x) =−1/(4πx)

csing =− 1

2(2π)d
√
1+ f 2

∇2
xG(x̂) . (16)

where x̂=
{
x∥/
√
1+ f 2,x⊥

}
. This expression can be evaluated in d dimensions to get

csing =− f 2

4π d/2

(
f 2+1

) d−3
2 Γ

(
d

2

)
gd

(√
1+ f 2

x⊥

x∥

)
1

xd
∥

with gd (y) =
y2− (d− 1)

(y2+1)
d
2
+1

, (17)

where Γ is the gamma function. For d =3, it reduces to

csing =− f 2

8πx3
∥
g3

(√
1+ f 2

x⊥

x∥

)
with g3 (y) =

y2− 2

(y2+1)5/2
. (18)

The expression in equation (17) has several interesting features. First, the argument
of the function gd contains the ratio between the x∥ and x⊥ coordinates. This implies

https://doi.org/10.1088/1742-5468/adb4ce 7
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Figure 2. The rescaled correlation function Cαβ|x∥|3f−2 along slices of constant x∥
values. This allows us to compare it to the scaling function g3. The dotted lines
correspond to f =1 while the solid lines correspond to f =5. We can see in solid
black the evaluation of equation (18).

a conical shape around the x∥ axis, which is observed in figure 1. This is an intrinsic
difference from systems with short-range interactions, where the correlations have a
parabolic shape [21, 22]. Second, the angle of the cone does not approach π

2 , as one
might expect, when the field is decreased towards zero. Instead, it settles at an angle,
unlike, for example, the Mach cone. From equation (17), we can see that the angle Θ
of the cone where the value of the correlation function is 0 is given by

Θd = sin−1

(√
d− 1

d+ f 2

)
. (19)

The expression in equation (19) shows that the angle of the cone in any dimensions

converges to sin−1
(√

1− 1/d
)
as the field goes to 0 (figure 1). In other words, at large

distances, the first non-zero term of the correlation in powers of f is not spherically
symmetric. Finally, the structure of the correlation in equation (17) shows a self-similar
shape for each cut along the x∥ axis. In fact, by stretching this scaling function gd
by the factor

√
1+ f 2, we find a universal shape for any cut and external field. The

function g3 is presented together with a numerical inversion of the Fourier transform of
the correlation element in figure 2.

We remark that the correlation shape at large scales is similar in structure to the elec-
tric potential generated by a simple quadrupole moment charge configuration (equally
spaced collinear charges of +q,−2q,+q along x∥) where f

2 is analogous to the magnitude
of the quadrupole moment tensor. This similarity suggests a relation to the picture of
the ionic cloud deformation proposed in the works of Onsager [3, 27].

https://doi.org/10.1088/1742-5468/adb4ce 8
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4. Time dependent correlations

Now that we have characterized the correlations in the NESS, we investigate the tem-
poral evolution of the correlations between the short-ranged correlations at equilibrium
and the algebraic correlations in the NESS. The focus remains on lengths that are large
compared to the Debye length and times that are large compared to the Debye time.

4.1. Switching on of the external field

Equation (12) can be solved exactly for an immediate switching on of the electric field,
namely, E(t) = E0H(t), to give

c̃++ =
f 2u2e−Bτ

2ABC∆

[
B2 cosh

(√
∆τ
)
+B

√
∆sinh

(√
∆τ
)
− 4Cs2

]
+

1

2BC
− 1

B
+1, (20)

c̃+− =
f ue−Bτ

2ABC∆

[
B
√
∆f usinh

(√
∆τ
)
(B− 2if su)+Bf ucosh

(√
∆τ
)
(∆− 2iBf su)

+2iCs
]
+

1

2C
− if su

BC
; (21)

we have introduced the variables u= s∥/s, A= 1+ s2, B = 1+2s2, C = f 2u2+ s2+1

and ∆ = 1− 4f 2s2u2. The other terms are deduced with c̃−− = c̃++ and c̃−+ = c̃*+−. At
long times, the dominant, time-dependent term in equations (20) and (21) corresponds

to the smallest eigenvalue of equation (12), B−
√
∆. We can read it in the expressions

in equations (20) and (21)

c̃++ ∼
τ→∞

f 2u2e−τ(B−
√
∆)

4AC∆

[
B+

√
∆
]
+

1

2BC
− 1

B
+1, (22)

c̃+− ∼
τ→∞

f 2u2e−τ(B−
√
∆)

4AC∆

[√
∆(B− 2if su)+ (∆− 2iBf su)

]
+

1

2C
− if su

BC
. (23)

These correlation terms can be approximated in the long-range regime, which translates
to s→ 0 in non-dimensionalized Fourier space. Again, we find that the behavior of all
the correlation terms is the same

c̃αβ ∼
f 2s2∥

2
(
s2+ f 2s2∥

)e−2τ
(
s2+f 2s2∥

)
+

s2

2
(
s2+ f 2s2∥

) . (24)

One sees that, when τ → 0, the correlation is 1/2. This is the Yukawa correlation found
in equilibrium: seen at large distances, it is a delta function at the origin, which gives a
constant in Fourier space. When τ →∞ one recovers the NESS result from the previous
section. We can identify the exponential as the solution to the diffusion equation in
Fourier space, which means that the transition between these two states follows diffusive
dynamics. The term f 2s2∥ enhances the diffusion in the direction of the driving field.
The correlation spreads like a nonisotropic diffusion process with diffusion constants κT
in the perpendicular directions and κT (1+ f 2) in the field direction.
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Figure 3. Sketch of the length scales at play and the functional dependence of the
density-density correlation function on the distance from the origin. The behavior
in the upper row (magenta) corresponds to the spatial relaxation of the correlation
function from equilibrium to NESS (switching on). The behavior in the lower row
(green) corresponds to the spatial relaxation of the correlation function from NESS
to equilibrium (switching off).

We can invert the time-dependent term back to real space to get

c(x,τ) =− f 2

8πd/2τ d/2 (1+ f 2)3/2
∂2

∂x̄2
∥

Γd/2−1

(
x̄2

8

)
x̄d−2

 , (25)

where Γd/2−1 is the (upper) incomplete gamma function of d/2− 1 and x̄={
x∥

√
τ
√

1+f 2
, x⊥√

τ

}
. This shape of the correlation can be written as

c(x,τ) =
1

8πd/2

1

τ d/2
f 2

(1+ f 2)3/2
Φ

(
x√
τ

)
. (26)

The function Φ is anisotropic in space and its asymptotic behavior is given by

Φ(y) = 2
(
f 2+1

)d/2
Γ

(
d

2

)
(d− 1)y2∥ −

(
1+ f 2

)
y2⊥(

y2∥ +(1+ f 2)y2⊥

) d
2
+1

∼ 1

yd
when y → 0, (27)

Φ(y) =
y2∥

y2∥ +(1+ f 2)y2⊥
exp

(
−
y2∥ +

(
1+ f 2

)
y2⊥

8(1+ f 2)

)
∼ exp

(
−y2

)
when y →∞. (28)

The argument of Φ in equation (26) presents diffusive scaling between the spatial and
temporal coordinates. This indicates that the observation length should be compared
to the length

√
τ . At a given time, the NESS correlations are observed below the length√

Tκt while an exponential decay of the correlations in space is observed beyond it
(figure 3). In figure 4, one can see the different regimes in absolute and rescaled axes at
different times.

4.2. Switching off of the external field

A similar procedure can be applied for the switch-off of the field. Equation (12) can be
solved exactly for an immediate switching off of the electric field, to give

c̃++ =− 1

2A
− f 2u2e−Bτ

2ABC
[B sinh(τ)+ cosh(τ)] , (29)
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Figure 4. A time series of the correlation element c−+ after a sudden switching
on of the external field. In the upper row, c−+ along real axes. In the lower row,
the rescaled correlation function c−+τ

3/2 along rescaled axes. The figure has been
evaluated for f =1. Near the center, one can see the conical shape found in the
NESS. Away from the center, we find the exponentially small equilibrium value. In
the rightmost panels, the angle predicted by equation (19) was added, allowing us
to appreciate the different behavior regimes visually.

c̃+− =−f 2s2u2e−2Aτ

2ABC
− f 2u2e−2s2τ

2BC
− if sue−Bτ

BC
+

1

2A
, (30)

At large times, the dominant terms of each correlation element are

c̃++ =− 1

2(1+ s2)
− f 2u2e−2s2τ

2(1+2s2)(1+ s2+ f 2u2)
, (31)

c̃+− =
1

2(1+ s2)
− f 2u2e−2s2τ

2(1+2s2)(1+ s2+ f 2u2)
. (32)

These correlation terms can be approximated in the long-range regime, which trans-
lates to s→ 0 in non-dimensionalized Fourier space. Again, we find that the time-
dependent behavior of all the correlation terms is the same

c̃++ ∼
s→ 0

−1

2
−

f 2s2∥e
−2s2τ

2
(
s2+ f 2s2∥

) , (33)

c̃+− ∼
s→ 0

1

2
−

f 2s2∥e
−2s2τ

2
(
s2+ f 2s2∥

) , (34)

One sees that when τ → 0, the correlation is the NESS solution at large distances
(equation (15)). When τ →∞, the equilibrium value of 1/2 is recovered (see figure 5).
In real space, the dynamics are given by convolution between the NESS solution at a
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Figure 5. A time series of the correlation element c−+ after a sudden switching
off of the external field. In the upper row, c−+ along real axes. In the lower row,
the rescaled correlation function c−+τ

3/2 along rescaled axes. The figure has been
evaluated for f =1. Away from the center, one can see the conical shape found in
the NESS. Near the center, we find the exponentially small equilibrium values.

large scale and the diffusion equation fundamental solution, which can be written as

c(x,τ) =
f 2

2(2π )d τ d/2
Ψ

(
x√
τ

)
, (35)

with Ψ(x) =
´

e−2ŝ2

ŝ2+f 2ŝ2∥
ŝ2∥e

−i ŝxdŝ. The diffusive nature, manifested in the scaling of the

dynamics, is also preserved in this case.
Figure 5 presents the relaxation of c−+ after a switching off of the external field. At

a given time, the equilibrium correlation function, of the spherically symmetric Yukawa
form, is observed below the length

√
Tκt while the NESS conical correlation with an

algebraic decay in space is observed beyond it.

5. Mesoscopic density fields and conductivity

The diffusive dynamics of the correlation suggest a relation to the algebraic relaxation
of the charge current reported in [23]. To establish this relation, we start by normalizing
the expression in equation (8) to get the dimensionless total charge current

J (τ)

σ0E0
= g (τ)+

1

ρ̄λ3
D

γel (τ ,f)+ g (τ)
rs
λD

γhyd (τ ,f) , (36)

where rs = (6πηκ)−1 is the hydrodynamic radius of the charged particles and g(τ) =
E(τ)/E0 is the temporal dependence of the external electric field. The electrostatic and
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hydrodynamic corrections γel and γhyd in equation (36) read, respectively

γel (τ ,f) =− 1

32π3f

ˆ
ds

s∥
s2
i
∑
α,β

zα [c̃αβ (s,τ ,f)− δαβ] , (37)

γhyd (τ ,f) =
3

8π2

ˆ
ds

1

s2

(
1−

s2∥
s2

)∑
α,β

zαzβ [c̃αβ (s,τ ,f)− δαβ] . (38)

Examining the integrals in equations (37) and (38), we can see that the results for
the correlation elements found in section 4 are not sufficient to describe the dynamics
of the charge current corrections: All the correlation elements are equal and cancel in
the sums. Hence, some finer details of the correlation elements are needed.

For a binary symmetric electrolyte, the summation terms in the integrals in
equations (37) and (38) suggest defining new field variables, the number density
U = ñ++ ñ− and the charge ∆ = ñ+− ñ−. With these variables the correction terms
can be written as

γel (τ ,f) =− 1

32π3f

ˆ
ds

s∥
s2
i c̃U∆ (s,τ ,f) , (39)

γhyd (τ ,f) =
3

8π2

ˆ
ds

1

s2

(
1−

s2∥
s2

)
c̃∆∆ (s,τ ,f) . (40)

In the following, we examine the dynamics and correlation of U and ∆ to understand
the temporal relaxation of the total charge current.

5.1. Mesoscopic equations

Similarly to [28], we start by considering equation (9) for the density of the species α
in Fourier space. For the particular case of binary symmetric electrolytes, we can write
the equations for the number density and charge fields

U̇ =−κTk2U − iκqE ·k∆+
√
2χU , (41)

∆̇ =−κTk2∆− iκqE ·kU − 2κρ̄
q2

ε
∆+

√
2χ∆. (42)

When E is set to 0, the two equations decouple, equation (41) describes (noisy)
diffusion, and equation (42) describes a (noisy) diffusion in the presence of screening,
which flattens even the slow modes of the fluctuations after a Debye time.

Applying a field couples the equations; in particular, this coupling gives rise to a
charge fluctuation that persists beyond the Debye time. To address the asymptotic long-
distance behavior of a system, it is often helpful to simplify the analysis by identifying
specific regimes where particular physical processes dominate the dynamics. In the
context of charge fluctuations, for example, it is known that the behavior is strongly
influenced by the Debye screening mechanism at short length and time scales. However,
when longer lengths and time scales are considered, it is often possible to approximate
the charge fluctuations with a quasi-stationary solution that captures the dominant
features of the system.
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Following this logic, we examine the behavior of equations (41) and (42) at long
times compared to tD, which allows us to neglect the temporal derivative and at large
lengths compared to λD, which allows to neglect the diffusive and noise terms. In this
regime, equation (42) simplifies to

2κρ̄
q2

ε
∆=−iκqE ·kU . (43)

Note that the noise term is also of higher order in λD . Now we can use equations (41)
and (43) to write a closed equation for U

U̇ =−κT
(
k2+ f 2k2∥

)
U +

√
2χU . (44)

We can write an equivalent version of equation (10) that is valid only for large dis-
tances compared to the Debye length. Similarly, we have ⟨U(k, t)U(k ′, t)⟩= (2π)dδ(k+
k ′)CUU (k, t), where CUU (k, t) is the Fourier transform of the correlation function in real
space. CUU satisfies a diffusion equation with a source term

ĊUU (k, t) =−2κT
(
k2+ f 2k2∥

)
CUU (k, t)+ 4κT ρ̄k2. (45)

Nondimensionlizing the equation as in section 2 gives

ċUU (s,τ) =−2
(
s2+ f 2s2∥

)
cUU (s,τ)+ 4s2, (46)

with the initial condition cUU (s,0) = 2, which correspond to the stationary state at
f = 0. Recalling that cUU =

∑
cαβ, it is easy to see that equation (24) gives the solution

to this equation. At this stage, we can gain some insight into the relaxation rates of the
conductivity corrections that we found in [23].

5.2. Relaxation rates of the currents

When we switch off the external field, the system transitions from NESS to equilibrium.
Examining equations (41) and (42) we see that when the field E is set to 0, the equations
decouple and fluctuations in ∆ decay quickly over a time scale tD. This leads to a rapid
decay of the correlation function between U and ∆ and the autocorrelation of ∆. This
is the origin of the exponential decay of the total electric current upon switching off the
external field.

To understand the second transition, from equilibrium to NESS, we see that with
equation (43) one can express cU∆ and c∆∆ with the solution to equation (46). The
time-dependent parts of cU∆ and c∆∆ are

δcU∆ (s,τ) =−
2if 3s3∥

s2+ f 2s2∥
e
−2τ

(
s2+f 2s2∥

)
, (47)

δc∆∆ (s,τ) =
2f 4s4∥

s2+ f 2s2∥
e
−2τ

(
s2+f 2s2∥

)
. (48)
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Now we can compute the relaxation terms of the currents in equations (37) and (38)

δγel (τ ,f) =−
3
(
f 2+1

)3/2
sinh−1 (f)− 4f 3− 3f

96
√
2π 3/2f 3

(
f 2+1

)3/2 1

τ 3/2
, (49)

δγhyd (τ ,f) =
1

16
√
2π

[
15+6f 2

f 3
sinh−1 (f)− 15+11f 2

f 2
√
f 2+1

]
1

τ 3/2
, (50)

consistent with the results reported in [23] for the algebraic relaxation rate and prefactor
dependence on the external field. In other words, the correlation terms respect a diffusive
scaling, and due to the fact that the interaction kernels Õ ∼ Ṽ ∼ 1

s2 have a long range
algebraic structure, the total charge current relax algebraically towards its value in the
NESS.

This effect is reminiscent of the long time tails effect seen in hydrodynamic systems
[8]. The long-time tails phenomenon involves the inertia of the fluid, which is absent in
our model.

6. Conclusion

In this work, we have characterized the behavior of the particle–particle correlation func-
tions in the long-range regime, in the NESS, and in the transient regime as the system
approaches NESS. At NESS, the density-density correlation functions are anisotropic
and decay algebraically with distance. These properties persist even in the weak-field
limit. The correlations exhibit a self-similar universal form for cuts along the axis par-
allel to the external field x∥. This self-similar structure is conical along the x∥ axis. This
distinguishes ionic systems from systems with short-range interactions. In both types
of systems (short-range and long-range interactions), particle–particle correlations are
short-range at equilibrium and long-range at NESS. However, with short-range inter-
actions the correlation spatial structure is conical and not parabolic. Moreover, we
examined the relaxation of the correlation functions from equilibrium to NESS. It
is characterized by a diffusive length scale

√
Tκt. At short distances compared with√

Tκt, the NESS correlation function is found. For larger distances, the correlations are
exponentially decaying. Lastly, we approximated the equations for the ionic fluctuation
fields to explain the relaxations of the total charge currents towards equilibrium and
non-equilibrium stationary state.

Recently, the temporal correlations of the fluctuations of number and charge dens-
ities have been investigated at equilibrium using SDFT [29]. It has been found that the
number correlations decay with time as t−3/2, which was attributed to the diffusion of
the ions. That the same algebraic decay was found for these correlations and the relaxa-
tion of the electric current following a sudden switching on of the electric field [23] raises
the question of a possible relation between the two phenomena. However, the algebraic
relaxation of the current and the conical correlations in the NESS appear only beyond
linear response, so that they cannot be directly connected to equilibrium fluctuations.
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