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We report on the elastic contact between a spherical
lens and a patterned substrate, composed of a
hexagonal lattice of cylindrical pillars. The stress field
and the size of the contact area are obtained by means
of numerical methods: a superposition method of
discrete pressure elements and an iterative bisection-
like method. For small indentations, a transition
from a Hertzian to a soft-flat-punch behaviour is
observed when the surface fraction of the substrate
that is covered by the pillars is increased. In
particular, we present a master curve defined by
two dimensionless parameters, which allows one to
predict the stress at the centre of the contact region
in terms of the surface fraction occupied by pillars.
The transition between the limiting contact regimes,
Hertzian and soft-flat-punch, is well described by
a rational function. Additionally, a simple model to
describe the Boussinesq–Cerruti-like contact between
the lens and a single elastic pillar, which takes into
account the pillar geometry and the elastic properties
of the two bodies, is presented.

1. Introduction
The contact mechanics between an elastic sphere and a
flat elastic solid, with frictionless, perfectly smooth and
non-conforming surfaces, is beautifully provided by the
Hertz theory [1]. From the knowledge of the geometry
(sphere radius R), the elastic properties (Young’s

2016 The Author(s) Published by the Royal Society. All rights reserved.
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modulus and Poisson’s ratio) and the total load F compressing the two elastic solids, one can
forecast the radius of contact a ∼ 3

√
RF, the total indentation ζ ∼ 3

√
F2/R of the two bodies and

the maximum pressure σ0H ∼ 3
√

F/R2. When adhesion between the two bodies in contact is
considered, several modifications from the Hertz theory have been proposed: (i) the Johnson–
Kendall–Roberts (JKR) model, which accounts for the attractive surface forces inside the contact
region, predicts a larger contact radius than the Hertzian value and applies for soft materials,
(ii) the Derjaguin–Muller–Toporov (DMT) model, which considers that the attractive forces act
only outside the contact region, infers a Hertzian contact profile but with larger deformations
(compared with the Hertz theory) for the same load, and suits for hard materials. Finally, the
Maugis–Dugdale (MD) model describes an unified way in precisely the transition between the
two previous models.

However, real surfaces are not smooth and the contact mechanics of two real bodies can bitterly
deviate from the Hertzian predictions since only partial contact can occur [1–3]. Attention has
been paid to this problem from two different points of departure, the first based on a statistical
approach of real surfaces and the second on the deterministic behaviour of periodic surfaces.

On the one hand, the statistical approach to the contact mechanics of real surfaces bifurcates
into three branches. First, considering the contact between a plane and an isotropically rough
surface composed of non-interacting ‘spherical asperities’ with a vertical position given by a
distribution of heights (exponential and Gaussian) [4–6], from which estimations of the number
of contact spots, the contact area and the total load were obtained in terms of the apparent
contact area, the density of asperities, the radius of curvature of the asperities and a function
of the heights distribution. In particular, it has been found that both the number of asperities
in contact and the real contact area are proportional to the total load [4], and the ratio of the
roughness to the indentation has been proposed as a parameter to account for the influence
of the roughness on the contact mechanics [5,6]. Additionally, useful empirical elasto-plastic
models can be found in the recent literature [7,8], which consider nominally rough surfaces
and are based on the above-mentioned statistical approaches. Second, a similar approach to
the previous one was developed, but considering a distribution for the shapes of the asperities,
i.e. an isotropically rough surface composed of non-interacting ‘paraboloid-like asperities’ with
a Gaussian distribution of the slopes and curvatures [9]. It has been shown that considering
roughness, given by a bandwidth of wavelengths, the real contact area is strictly proportional
to the load and, thus, the stress distribution at the average asperity contact region remains
unchanged. Nevertheless, the two above-mentioned approaches break down for large loads, at
which the separation between the contact surfaces becomes small and the interaction between
adjoining asperities cannot be neglected. Finally, the surface roughness power spectrum, for
instance, self-affine fractal surfaces and frozen capillary waves, was employed to estimate the
ratio between the real and apparent contact areas [10]. This description is particularly accurate
for high loads, and it is based on the knowledge of the stress distribution, which depends on the
average pressure and the magnification (the ratio between size of the apparent contact area and
the shortest wavelength roughness). It also predicts a linear dependence of the real contact area
on the total load, for small loads and small real-to-apparent contact area ratios. Even though
the aforementioned statistical methods provide average quantities and global insight of the
rough contact phenomenon, the local stress and displacement fields at the contact spots remain
inaccessible since the surface topography may not be persistent from one body to another.

On the other hand, in order to gain insight on the local response of the bodies in contact,
periodic contact problems have been addressed [11,12]. For instance, the contact between a flat
surface and a well-characterized one-dimensional wavy surface, of wavelength λ and amplitude
δ, has been addressed by superposition of concentrated normal forces at the surface of an infinite
half-space (Boussinesq–Cerruti approach). In this situation, a close-form solution for the stress
and displacement fields is obtained and we should encourage the interested reader to review
the aforementioned bibliography. However, we should mention that for a given line load F,
the local contact occurs in bands of increasing width 2a that obey the scaling F ∼ δ sin2(πaλ)
with a maximum stress σ0 ∼ (δ/λ) sin(πa/λ). Following the same ideas, a well-characterized
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Figure 1. Illustration of the discrete contact problem studied in this manuscript and its asymptotic cases, with respect to the
surface fractionΦ of the substrate that is occupied by the pillars. (Online version in colour.)

two-dimensional regular and orthogonal wavy surface was analysed but only asymptotic
behaviours have been discerned. In particular, for light loads, a local Hertzian behaviour is
expected at the contact between the plane and each summit of the wavy surface, a nearly circular
region of contact of radius a ∼ 3

√
F is observed. Despite these efforts, the size of the contact region

and the stress field provoked by the contact of rough finite-size surfaces remains not predicted by
the discussed deterministic method.

Understanding the contact mechanics of rough surfaces, starting with well-controlled
patterned surfaces, is fundamental in order to clarify the effect of pattern covering on friction [13–
18], or to identify the influence of texturation on the adhesive properties of surfaces [19–22].
This query has received a lot of attention since patterned surfaces have been extensively used
as biomimetic surfaces [23–28]. From this point of view, one of the important issues is the contact
formation, which fixes the relationship between the measured adhesion and the preload before
the detachment [29,30].

In the simplest case of a spherical lens on well-controlled patterned surface made on
elastomeric PDMS with circular bumps and cylindrical pillars, a transition from suspended (the
lens touches only the top of the bumps/pillars) to intimate contact (the lens gets in contact not
only with the bumps/pillars but also with the underlying substrate in between the patterns) has
been observed. The contact formation has been shown to depend strongly on the geometry and
elastic properties of the textured surface [3,31–33]. In particular, Verneuil and co-workers [31]
have shown that the one leading parameter is the surface fraction Φ occupied by the pillars, since
the critical force, which marks the threshold between both contact regimes, scales as Fc ∼ Φ3.

Therefore, there is no doubt about the central role that the surface fraction Φ plays in the
distribution of stresses and in ascertaining the size of the contact region. The geometry of a sphere
in contact with an array of cylindrical pillars is represented graphically in figure 1. When Φ → 1,
a classic problem consisting in the contact mechanics of a sphere and a half-space is recovered, for
which the stress and displacement fields are described by the Hertz theory. At the opposite limit,
when Φ → 0 the contact mechanics is no longer a Hertzian contact but should be represented by
the compression of a half-space and a cylindrical pillar, as depicted in figure 1. The indentation of
an elastic half space by a flat rigid punch is described by the classical Boussinesq–Cerruti solution,
which is obtained either by the superposition of concentrated normal forces [1,34] or by means of
a Hankel transform method with an imposed surface displacement [35,36]. As well, an analysis,
which has remained out of focus, presents a numerical solution that provides the transition from
the limit case of the contact between a rigid punch and an elastic half-space to the opposite case
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of an elastic cylinder and a rigid flat surface [37]. Nevertheless, the passage from one regime
to another is not obvious and work must be done to describe clearly this phenomenon. This is
precisely the object of the present article.

In this paper, we discuss the elastic contact between a spherical lens and patterned surface
with cylindrical pillars. The presented analysis, which corresponds to a first approach on the
real contact mechanics of periodic rough surfaces, considers two fundamental hypotheses:
(i) frictionless contact and (ii) no adhesion effects. The impact of elastic properties and of the
geometry of the system is analysed, with special focus on the surface fraction occupied by
the pillars. A detailed description of the transition from Hertzian contact (short pitch distance)
to soft-flat-punch (SFP) regime (large pitch distance), for the aforementioned lens-patterned
substrate system, is presented. We will discuss the contact behaviour for a wide range of elastic
parameters (combination of Young’s modulus) and displacement of the bodies (total indentation),
and analyse the effects of the pitch between pillars in terms of the stress concentration and the
number of pillars (real contact area) within the contact region.

2. System description
Consider an elastic system formed by a semi-infinite substrate, the upper surface of which is
patterned with a hexagonal lattice of cylindrical pillars, and a spherical lens. We imagine a
situation in which the lens is pushed against the substrate, whereas the latter is fixed at the far-
field, with respect to the lens initial position. A discrete mechanical contact region (for small loads)
occurs, which produces and conveys stress and displacement fields at the lens and the substrate.
In brief, once a load is applied, the system evolves from an initial undeformed state, at which the
lowest point of the lens touches in a single point the centre of the top of a central pillar, towards
a final deformed state, where multiple contact regions appear. We expect to observe deviations
from this general trend, depending on the specific geometry of the system and the magnitude of
the applied load.

Herein, we consider another important hypothesis: the effect of lateral displacement, due to
the discrete stress field is negligible with respect to normal displacement. Our intuition leads
us to imply that the lateral displacement provoked by a single pillar is cancelled by the lateral
displacement generated by the surrounding pillars and, as a result, the superposition of the effects
of all the pillars can be neglected. In addition, also due to the aforementioned idea, the patterned
substrate can be further separated. To be more precise, the system, represented in figure 2, can be
decomposed into several independent bodies: (i) a spherical lens, a cap that corresponds to the
lower region of a sphere of radius R; (ii) a flat substrate, which we will take as an elastic half-
space; and (iii) an array of cylinders, where d and h are, respectively, the diameter and height of
each pillar, whereas e is the pitch, the distance between the centre of two pillars.

(a) Array of pillars
When the lens is pushed against the patterned substrate, the number of pillars in contact Q can be
estimated by using the Wigner–Seitz cell of an hexagonal lattice of pillars (figure 2). Computing
the fraction of the surface occupied by the pillars:

Φ = π

2
√

3

(
d
e

)2
, (2.1)

and, considering a circular region of radius a as the apparent contact zone, the number of pillars
in contact becomes

Q ≈ 2π√
3

( a
e

)2
. (2.2)

Nevertheless, one cannot predict an accurate number of pillars Q because the apparent contact
radius a is unknown a priori. Despite this fact, in the present study we will consider that R � d/2
and R � a which corresponds to a lot of practical situations previously studied in the literature.
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Figure 2. Schematic of the lens-substrate system. Both bodies aremade of elasticmaterials: the lens is a spherical cap,whereas
the substrate consists of a half-space with an hexagonal array of cylindrical pillars at its upper surface. The elastic properties (E
Young’smodulus andν Poisson’s ratio) of the components and their relevant dimensions (R lens radius, d diameter and h height
of the pillars and e pitch distance) are shown. The subindices l, p and s correspond to lens, pillars and substrate, respectively.
(Online version in colour.)

Considering a polar system (r, θ ), the position of the centre of the ith pillar is given by the
coordinates (ri, θi), where the value of i = 0 corresponds to the pillar whose centre is placed at the
origin of the coordinate system. A detailed description of the pillar array and the precise method
to enumerate the pillars and to count the number of pillars in contact is given in the electronic
supplementary material.

(b) Displacement and indentation
Before the lens and patterned substrate are squeezed and the deformation of both bodies takes
place, the centre of the spherical lens is placed at z = h + R. In turn, the equation of the pillars-
substrate surface is

g◦(r, θ ) = h
Q∑

i=0

[
1 − H

(
ρi − d

2

)]
, (2.3)

where H is a Heaviside step function, taking either the value of 0 if ρi ≤ d/2 or 1 if ρi > d/2. As
described in the electronic supplementary material relative to the centre of the ith pillar, which is
placed at (ri, θi), ρi is the distance to the point (r, θ ), given by

ρi =
√

r2 + r2
i − 2rri cos(θ − θi). (2.4)

These initial positions indicate that the lens and the patterned substrate are in contact at a single
point, at r = 0 where the lowest position of the lens touches the centre of the pillar upper surface.

Once the load is applied and the system has attained equilibrium, the final gap between the
surfaces, the space separating the lens and the pillar-substrate body, is now given by

�(r, θ ) = h + R −
√

R2 − r2 − g◦(r, θ ) + w(r, θ ) − ζ , (2.5)

where w(r, θ ) is the total displacement field and ζ = w(0, θ ) is the indentation, i.e. the displacement
at the centre. For light loads and within the apparent contact region, only the top of the pillars can
be in contact with the lens, whereas the substrate not covered by pillars will be separated from
the lens by a gap. In addition, one may note that, within the contact region, the top of each pillar
may be either in total or partial contact. Whatever the contact situation of each pillar, at the local
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contact regions, one has �(r, θ ) = 0 and g◦(r, θ ) = h, and thus the total displacement field w(r, θ ) is
related to the total indentation ζ as follows:

w(r, θ ) = ζ − [R −
√

R2 − r2]. (2.6)

3. Discrete contact
For each body j (lens j = l, array of pillars j = p and substrate j = s), considering its Young’s elastic
modulus Ej and Poisson’s ratio νj, we define the parameter γj = [1 − ν2

j ]/Ej. Herein, we will
always consider that the pillars and the substrate are made of the same material, thus Ep = Es

and νp = νs. As mentioned above, when these bodies are brought into contact, i.e. the lens is
approached towards the pillars, which in turn pushes the substrate, they suffer a deformation.
Under these circumstances, recalling that the vertical displacement at the surface of a half-space
uz due to a concentrated point force Σ is given by [1]

uz(Σ , r) = γΣ

πr
, (3.1)

and applying the principle of linear superposition, the normal displacement of the spherical lens
and the substrate (j = l, s) reads

wj(r, θ ) =
∫∫
A

uz(σ , �)� d� dϕ, (3.2)

where σ = σ (�, ϕ) is the stress field over the apparent contact area A, which is described by � and
ϕ, the radial and angular coordinates relative to the point (r, θ ). In other words, the displacement
wj at the point (r, θ ) is the effect of the stress field applied over a region described by the set of
relative positions (�, ϕ). Owing to the discrete nature of the contact, the normal displacement of
each surface can be decomposed as follows:

wj(r, θ ) = γj

π

Q∑
i=0

Wi(r, θ , ri, θi) and Wi(r, θ , ri, θi) =
∫ϕi2

ϕi1

∫�i2

�i1

σ (�, ϕ) d� dϕ, (3.3)

where Wi is the reduced displacement at (r, θ ) due to the contact with the ith pillar. Additionally,
we make emphasis on the fact that the displacement field Wi depends explicitly on the position
of the ith pillar, since the integration limits �i1, �i2, ϕi1 and ϕi2 must be determined for each
combination of pillar location (ri , θi) and point (r, θ ). For instance, �i1 and �i2 are the solutions
for � of quadratic equation

�2 − [2ρi cos(ϕ)]� +
[

(ρi)
2 −

(
d
2

)2
]

= 0, (3.4)

where ρi = ρi(r, θ , ri, θi) given in equation (2.4), whereas ϕi1 and ϕi2 depend on the location of the
point (r, θ ). On the one hand, if (r, θ ) lies inside the contact region of the ith pillar, we have ϕi1 = 0
and ϕi2 = π , and, on the other hand, if (r, θ ) is located outside the contact region of the ith pillar,
we find

ϕi1,2 = ± arcsin
(

[d/2] sin(π/2)
ρi

)
. (3.5)

In turn, each pillar is compressed because of its confinement between the lens and the
substrate. Herein, we consider that the compression of the ith pillar is approximated by Hooke’s
Law, which gives a change of height equal to δi = 4hFi/(πd2Ep). As well, Fi is the load exerted
over the ith pillar in the contact region, which reads

Fi(ri, θi) =
∫ 2π

0

∫ d/2

0
σ (ρi, φi)ρi dρi dφi, (3.6)

whereas, in this situation, ρi and φi represent, respectively, the radial and angular coordinates
at the surface of the ith pillar, relative to the pillar centre (ri, θi) and restricted to the ranges ρi ∈
[0, d/2] and φi ∈ [0, 2π ]. In order to transform, the stress field over the entire domain σ (r, θ ) into
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σ (ri, θi, ρi, φi), one should express r and θ for a given relative position (ρi, φi) and a pillar (ri, θi)
using the following expressions:

r =
√

ρ2
i + r2

i + 2ρiri cos(φi − θi) and θ = arcsin
(

ρi sin(π − φi) + ri sin(θi)
r

)
. (3.7)

Additionally, the total load FT reads

FT =
∫∫
A

σ (r, θ )r dr dθ , (3.8)

which, accounting with the discrete nature of the contact, can be obtained by adding the
contribution of each pillar as follows:

FT =
Q∑

i=0

Fi(ri, θi). (3.9)

Since, the total displacement field is also composed of

w(r, θ ) = wl(r, θ ) + ws(r, θ ) + δig◦(r, θ )
h

, (3.10)

which gathers the displacement contributions given in equation (3.3) and the Hookean pillar
compression δi, imposing a total indentation, given by equation (2.6) and evaluated at the top
of the pillars where g◦(r, θ ) = h, allows one to recover the stress field σ inside the contact region.
Herein, σ is computed numerically using a superposition method of discrete pressure elements,
for which a segmentation of each contact region (the top of each pillar) into square subregions
of constant constraint is performed. Details are given in the electronic supplementary material.
A similar approach has been introduced and validated in previous studies [38,39], for which a
Hookean hypothesis and a uniform pressure has been applied to each pillar. Even though our
methodology retains the Hookean behaviour for each pillar, it allows the appearance of non-
axysimmetric pressure fields for the non-centred pillars (i > 0), thanks to the discretization of each
contact region. This procedure provides a more realistic approach for several cases, including
small total loads FT and small surface fractions Φ, but also the effect of the finite size of the
contact area, for any load and any surface fraction. The corresponding results are presented in the
following section.

4. Results
In figure 3a, the contact region and the stress field for a small surface fraction Φ = 0.03 is depicted
for Ep = Es = 1.6 × 106 Pa, ζ = 0.3 µm, two particular indentations and all other parameter values
given in table 1. The contact radius is approximately equal to a ≈ e + d/2 = 26 µm. For the pillar
at the centre of the contact region, it turns out that the stress field is equivalent to a soft-flat-
punch (SFP) stress field. The stress field is axissymetric, with a large gradient, i.e. small σ around
the central zone r 
 0 and very large σ near the edge of the pillar r � d/2. We clearly observe
an increase in an order of magnitude when going from the centre to the border of this pillar. In
addition, within the primitive cell, a second pillar is in contact, subjected to a stress field which is
only symmetric with respect to the plane θ = 0. This field is eccentric with respect to the centre of
the pillar, leading to slightly oblate iso-stress contour lines, which recover the centric and circular
shape as the border of the pillar is reached. The increase of stress magnitude, from the centre to
the border of the pillar, is very similar to the one observed for the central pillar. The stress σ at
the central region of both pillars seems to follow a Hertzian-like behaviour, a square root profile
calculated with the stress σ0 at r = 0 and the contact radius a obtained from the simulations. As
expected, relatively high magnitudes of the ‘discrete’ stress field are observed in this case, since
the total load is concentrated over seven pillars, considering the geometry of the system. For
comparison, the Hertzian stress profile is plotted in the figure.
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Figure 3. Stress field at the contact region σ within the primitive cell of the system delimited by the dashed lines, obtained
for Ep = Es = 1.6 × 106 Pa, ζ = 0.3µm, different values of Φ—(a) Φ = 0.03 and (b) Φ = 0.82—and the remaining
parameter values given in table 1. The dotted curves delimitate the computed contact region for each case. a(i) and b(i) show a
two-dimensional representation in the plane xy, whereas a(ii) and b(ii) show a one-dimensional representation in the axis r =√
x2 + y2. In theσ versus r representation, curves indicating the Hertz and soft-flat-punch stress fields, given, respectively, by

equations (5.1) and (5.3), and amodified Hertz-like behaviour, for which the stressσ0 at r = 0 and the apparent contact radius
awere obtained from the numerical simulations, are also depicted. (Online version in colour.)

Table 1. The values of the parameters used to obtain the presented results.

parameter values units

R 2 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h 2 µm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d 4 µm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φ [2.3 × 10−3, 8.2 × 10−1] 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζ [0.005, 0.5] µm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

El 1.6 × 106 Pa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ep = Es [103, 1012] Pa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

νl 0.5 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

νp = νs 0.5 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 4. (a) Stress at the centre of the contact region σ0, for ζ = 0.3µm and the remaining parameters given in table 1.
Different pillar-substrate stiffnesses, from (top/red) hard to (bottom/violet) softmaterials, are presented. Continuous lineswere
obtained from equation (6.4) and the corresponding fit ofΦH ∈ [0.306, 0.38] andΦS ∈ [0.0094, 0.0135]—both from hard to
softmaterials, for each set of parameters. TheHertzian and soft-flat-punch valueswere computedwith equations (5.2) and (5.7),
respectively. (b) Real contact areaA as functions of the apparent contact areaπa2, for Ep/El = 1 and the remainingparameters
given in table 1. Dashed lines (from (top/red) high to (bottom/violet) low surface fractionΦ) indicate the linear dependence
A= Φ[πa2], expected to be the asymptotic behaviour for relatively large indentations ζ and, thus, large apparent contact
radius a. (Online version in colour.)

For the same indentation and Young’s modulus, the contact region and the stress field for
a large surface fraction Φ = 0.82 is illustrated in figure 3b. The contact radius is approximately
equal to a ≈ 5e + d/2 = 23 µm, slightly smaller than the radius of the small Φ = 0.03 case. The
behaviour of σ at the central pillar deviates strongly from the SFP profile, with a nearly constant
stress magnitude at the centre region 0 ≤ r ≤ d/4, that diverges rapidly as the border is reached
(a stress profile similar to the ones found by Gecit [37]). Nevertheless, the stress profile remains
axisymmetric and its magnitude is relatively small over the entire lid of the pillar. For the
other pillars, which are not at r = 0, the local stress field is only symmetric with respect to the
corresponding plane θ = θi of the ith pillar. Oblate iso-stress contour zones, nearly crescent-
like shapes, are found, mainly for the pillars near the border of the contact region. Once more,
considering σ at the central region of each pillar, a Hertzian stress field is observed, with the
usual square root profile computed with a stress σ0 at r = 0, very close to the true Hertz value,
and a contact radius a that is significantly smaller than the true Hertz contact radius.

It is important to note that, while a constant indentation ζ is kept for the cases presented in
figure 3, a reduction of σ0, of one order of magnitude (from 33 to 8 kPa) when Φ is increased (from
0.03 to 0.82), is observed. As well, the same increase of Φ produces a reduction of the apparent
contact region and the contact radius a (from 26 to 23 µm), but the real contact area given by the
number of pillars in contact has increased, even though the total load FT has risen (from 3 to
10 µN).

In figure 4a, the dependence of the stress at the centre of the contact region σ0 on the surface
fraction Φ, for an indentation of ζ = 0.3 µm and the remaining parameter values given in table 1,
is depicted. Going from right to left, when the surface fraction is Φ = 1, the Hertzian value of
σ0 is found. As Φ decreases, the total load distribution over a smaller number of pillars induces
a slightly larger apparent contact region, but it provokes a stress concentration, represented by
an increase of σ0, due to the reduction of the real contact area and the number of pillars in
contact. If we continue to diminish Φ, a monotonic growth of σ0 is observed until it saturates to a
plateau. This saturation, which corresponds to an SFP behaviour, is completely attained when the
surface fraction Φ becomes small enough to leave just a single pillar within the contact region.
In figure 4a, the Hertz-to-SFP transition is presented for different values of the ratio Ep/El, for
the same indentation ζ . A reduction of the system stiffness Ep/El enhances a decrease of the σ0

 on October 27, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160235

...................................................

stress levels observed for both limits, Hertz and SFP. Despite this vertical shift, the general trend
remains unchanged whatever the value of the ratio Ep/El.

In figure 4b, the real contact area A is presented in terms of the apparent contact area πa2,
for a Young’s moduli ratio Ep/El = 1 and all other parameters given in table 1. The following
description remains qualitatively valid for any value of the ratio Ep/El, presented in this work.
Note that data corresponding to very small values of the surface fraction Φ < 0.01 are included
but not visible, because they are superimposed near the origin since the real and apparent contact
areas are equal and correspond to the top surface of a pillar A= πa2 = πd2/4 ∼ 5 × 10−11 m2,
which is two orders of magnitude smaller than most of the presented data. Describing each curve
from right to left, when the indentation ζ is small, both the apparent πa2 and the real A contact
areas are small, with A< πa2. As the applied total load FT, the indentation ζ and the apparent
contact area πa2 are increased, A grows monotonically and approaches the trend Φ[πa2], for all
the values of Φ. For the highest values of the surface fraction Φ, the real contact area A approaches
the Hertzian value AH, which is a circle of radius a = √

Rζ . As we diminish the surface fraction
Φ, the number of pillars in contact is reduced, provoking a drop of A. At a certain value of Φ,
which is smaller for the highest Young’s moduli ratios Ep/El, the real and apparent contact areas
suddenly take the value of the SFP contact, i.e. the area of the top of a single pillar AS = πd2/4.

5. Asymptotic cases
There are special situations for which the size of the contact region, the contact radius a, can be
predicted analytically. They correspond to the two limiting cases of the surface fraction, which are
depicted in figure 1: Φ → 1 for Hertzian and Φ → 0 for SFP contact. Both behaviours are briefly
described in the following subsections.

(a) Hertzian contact
Hertzian contact [1] occurs either when Φ → 1 or when the contact radius is a � d/2. Under
these conditions, the problem simplifies to an axisymmetric geometry for which the pillar array
becomes a layer of finite thickness [40]. Considering infinite friction between the two bodies, the
well-known stress field for Hertzian contact reads

σ (r) = σ0H

√
1 −

( r
a

)2
, (5.1)

where the contact radius is a = √
ζR, and the stress magnitude σ0H, perceived at the centre of the

contact region r = 0, is computed from the total indentation ζ as follows:

σ0H = 2
π [γl + γs]

√
ζ

R
. (5.2)

Therefore, as the pillars/substrate had become a single entity, σ0H is equally sensitive to a change
in stiffness of any component of the system (lens and compound substrate). In addition, as it
is explicitly indicated in equation (5.2), a larger value of the stress σ0H is expected when an
important indentation ζ is imposed. It is also well known that the total force is FT = (2π/3)Rζσ0H.

(b) Soft-flat-punch contact
When Φ → 0, a SFP elastic contact is observed, because only one pillar is in contact with the lens.
In the case where Ep � El, we can consider that the pillars/substrate system is rigid δ0 = ws(r, θ ) =
0 and, if the top of the pillar is completely in contact with the lens a = d/2, the problem is described
by a uniform normal displacement generated with a rigid flat punch [1,35,36]. The solution for the
aforementioned problem corresponds to the superposition of the SFP solution, within a circular
region at which uniform displacement is imposed. This situation, for which the well-known stress

 on October 27, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


11

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160235

...................................................

0

0.25

0.50

s 0S
/s

0S
(E

c
→

•
) 0.75

1.00

10–6 10–3

El/Ep

1 103

Figure 5. Stress at the centre of the pillarσ0S, for the soft-flat-punch contact, as a function of the ratio of elastic moduli El/Ep,
forΦ = 2.3 × 10−3 and the remaining values given in table 1. The behaviour described by the continuous curvewas computed
with equation (5.8). (Online version in colour.)

field reads

σ (r) = σ0S(Ep → ∞)

[
1 −

(
2r
d

)2
]−1/2

(5.3)

is valid for the lens–pillar-substrate system only for a total indentation ζ that is smaller than
the pillar height h. Herein, the stress magnitude σ0S(Ep → ∞) at r = 0, the centre of the pillar, is
computed from the total indentation ζ as follows:

σ0S(Ep → ∞) = 2ζ

πdγl
. (5.4)

By contrast, the case for which Ep 
 El does not presents an analytical model, and must be
studied numerically [37]. Herein, we will name this case the ‘soft-flat-punch’ contact problem,
for which we propose the following simple model. Considering that the total indentation ζ

equals the addition wl(0, θ ) + ws(0, θ ) + δ0, and the expressions F0 = πd2σ0S/2 and wl,s(0, θ ) =
πdγl,sσ0S/2, which come from the rigid-flat-punch solution (the latter by making ζ = wl,s(0, θ )
and σ0S(Ep → ∞) = σ0S in equation (5.4)), and that the compression of the centre pillar is δ0 =
4hF0/(πd2Ep), we can write

ζ ≈ πd
2

[
γl + γs + 4h

πdEp

]
σ0S. (5.5)

This relationship resembles a combination of springs in series, which configuration is described
by an effective elastic parameter γ ∗ constructed as follows:

γ ∗ ≈ 1 − ν2
l

El

{
1 +

[
1 − ν2

s

1 − ν2
l

]
El

Es
+ 4hEl

πd[1 − ν2
l ]Ep

}
. (5.6)

In particular, when Ep � El and recalling that Es = Ep, which corresponds to a rigid flat punch and
an elastic half-space since the pillar/substrate can be taken as a rigid body, and also considering
that νl ∼ νp and h ∼ d, leads us to recover γ ∗(Ep → ∞) = γl.

For the contact between the lens and a soft pillar, employing the effective elastic constant, we
can define the stress at r = 0 as

σ0S = 2ζ

πdγ ∗ . (5.7)

In addition, for a constant total indentation ζ and considering Es = Ep, the comparison between
the previous definition and equation (5.4) yields the following expression for σ0S in terms of the
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ratio of Elastic moduli El/Ep:

σ0S = σ0S(Ep → ∞)

{
1 +

(
1 − ν2

s

1 − ν2
l

+ 4h

πd[1 − ν2
l ]

)
El

Es

}−1

. (5.8)

In figure 5, this relationship is shown, where sigmoid behaviour shows an excellent agreement
with the numerical results. For El/Ep < 10−3, a saturation towards the Boussines–Cerruti solution
is observed σ0S 
 σ0S(Ep → ∞). As the ratio El/Ep increases, the value of σ0S falls down, reaching
a new plateau of level σ0S 
 0, when El/Ep > 103. Therefore, in the latter regime, for which the
lens is extremely soft compared with the pillar/substrate stiffness, the stress σ0S is negligible.

6. Discussion
Starting with a relatively slight load, provoking the contact of the lens with a single pillar, the
SFP contact behaviour is observed until a second pillar (six pillars at different angular position
but the same radial coordinate) is touched by the lens, which is due to an increase of the load
and, consequently, the total indentation. Under this circumstances, from the contact condition
�(r, θ ) = 0, we find the relationship between the indentation ζ and the radial position rS, at which
a second pillar must be placed in order to be barely touched by the lens

R −
√

R2 − r2
S +

[
2
Π

arcsin
(

d
2rS

)
− 1

]
ζ = 0, (6.1)

with Π = π + 4h/[d(γs + γl)Es]. For a given ζ , we can estimate the radial position rS at which a
second pillar may be reached and, consequently, the corresponding pitch distance eS = rS and the
SFP threshold surface fraction

ΦS = π

2
√

3

(
d
rS

)2
. (6.2)

Therefore, when the combination of both parameters, indentation ζ and surface fraction Φ, is such
that Φ < ΦS, only one pillar must be in contact with the lens.

Considering that R � rS � d/2, for relatively large indentations ζ � (3/2)3R(d/Π )2, we can
approximate the radial position with the expression rS ≈ √

2Rζ , which leads to a threshold surface
fraction that scales as ΦS ∼ d2/(Rζ ).

Now, from the opposite situation, we define ΦH as another threshold surface fraction, above
which a Hertzian contact can be used to approximate the magnitude of the stress field at the
centre of each pillar. For high values of Φ, this behaviour has been discerned qualitatively from
the numerical results, as it was shown in figure 3b. Nevertheless, for a given indentation and a set
of elastic parameters, a quantitative estimation of ΦS is only achieved numerically.

Based on this insight, we introduce the reduced variables σ ∗
0 , the stress at the centre of the

central pillar, and Φ∗, the reduced surface fraction, defined as

σ ∗
0 = σ0(Φ) − σ0H

σ0S − σ0H
and Φ∗ = Φ − ΦS

ΦH
, (6.3)

where σ0H and σ0S are the limiting stresses at r = 0 for the Hertz and the SFP contact conditions,
i.e. when Φ < ΦH and Φ > ΦS, respectively. Herein, both stress values σ0H and σ0S are obtained
numerically for Φ ∼ 1 and Φ ∼ 0, respectively, whereas ΦH and ΦS result from fitting the data of
the curves shown in figure 4a and their equivalents for the different values of indentation ζ and
Young’s modulus ratio Ep/El given in table 1.

As shown in figure 6a, all the data, including the curves in figure 4a and the results for different
values of ζ , collapse to a master curve when the reduced variables given in equation (6.3) are used.
The following rational function,

σ ∗
0 = [1 + Φ∗]−3, (6.4)

provides a good qualitative description of the general trend for Φ∗ ≥ 1, and an excellent
quantitative agreement for Φ∗ ∈ [0, 1 − ΦS/ΦH]. Therefore, the stress concentration and the
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Figure 6. (a) Reduced stress at the centre of the pillarσ ∗
0 as function of the reduced surface fractionΦ∗ and (b) reduced real
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table 1. The trends depicted by the continuous lines [—], corresponds to the empiric relationships given by equation (6.4) for
(a), and equation (6.6) for (b). (Online version in colour.)
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growth of σ0, perceived during the transition from a Hertzian contact, along a discrete contact
region, to a single punch-like contact, behaves as the inverse of the cube of a quantity that
measures the separation from the limiting regimes: the difference of the surface fraction from
the SFP threshold divided by the Hertz threshold value. Outside this transition zone, we recover
the limiting cases: on one hand, Φ∗ = 0 implies that σ ∗

0 = 1 and, as a consequence, the SFP
behaviour σ0(Φ) = σ0S is expected, whereas on the other hand, Φ∗ = (1 − ΦS)/ΦH implies that
σ ∗

0 ≈ 0 and a Hertzian contact σ0(Φ) ≈ σ0H should represent a good illustration of the discrete
contact phenomenon.

The dependencies of ΦS and ΦH on the indentation ζ and Young’s modulus ratio Ep/El are
depicted in figure 7a and b, respectively. For a fixed value of the ratio Ep/El, both threshold
parameters ΦS and ΦH follow a similar monotonical decreasing tendency as the reduced
indentation ζ/h increases. The effect of the ratio Ep/El seems to be restricted to a shift towards
larger values of both thresholds, strongly for ΦH and almost indistinguishably for ΦS. It is also
important to note that the values that ΦS takes are an order of magnitude smaller than the values
presented by ΦH.

For very small indentations ζ/h < 0.025, the determination of the values of ΦS and ΦH becomes
delicate, since the Hertzian and SFP stresses at r = 0 present a very close magnitude σ0S ∼ σ0H.
Matching equations (5.2) and (5.7) gives the threshold indentation ζT/h = [γ ∗/(γl + γs)]2[d2/Rh],
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which for the parameters given in table 1 varies between 0.004 ≤ ζT/h ≤ 0.014 and acts as an
inferior boundary for the swept range of indentations. Nevertheless, an estimation of both
parameters may be provided for ζ/h < 0.025. From the curve of σ ∗ as a function of Φ∗ for the last
performed fit, i.e. for ζ/h = 0.025, ΦH corresponds to the value of Φ for which σ ∗

0 = 0.17, whereas
ΦS is to the value of Φ that makes σ ∗

0 = 0.92. Using this criterion, ΦH and ΦS can be approximated
for ζ/h < 0.025. This results are shown in figure 8 and will be discussed in the conclusion section.

We introduce the reduced variable A∗, the dimensionless real contact area, defined as

A∗(Φ) = A(Φ) − AS

AH − AS
, (6.5)

where AH and AS are the limiting areas for the Hertz and the SFP contact conditions. Both values
are obtained by computing the area of a circular region of radius a = √

Rζ for the Hertzian case,
whereas a = d/2 for the SFP situation. In figure 6b, all the data, including the curves in figure 4b
and the results for different values of ζ , show a similar behaviour when the reduced variable,
given in equation (6.5), is used in combination with the surface fraction Φ. The following power
law

A∗ = Φ0.7 (6.6)

provides an accurate forecast for the general trend of the contact area in the range Φ ∈ [10−2, 100].
Note that only the contact area data for which A<AS is visible in figure 4b, with logarithmic
scales, since for an SFP contact situation A=AS and the reduced area is A∗ = 0.

7. Conclusion
In the present work, the elastic contact between a spherical lens and a patterned substrate
(hexagonal lattice of pillars) has been studied in depth, using a superposition method of discrete
pressure elements. For relatively small indentations, a transition from a Hertzian elastic contact
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behaviour towards a SFP contact, considering a uniform displacement of the pillars, was observed
when the surface fraction of pillars on the substrate is increased. With the use of reduced variables
for the stress at the centre of the central pillar and the surface fraction occupied by the pillars,
all the results collapse into a master curve, for which a rational function describes the passage
between the aforementioned limiting contact regimes. Additionally, a simple model to describe
the behaviour of a soft-flat-punch contact between the lens and a single elastic pillar has been
presented as a function of the pillar geometry and the elastic properties of the lens and the pillar-
substrate. Special attention has been made on the effect of the ratio between Young’s moduli of
both bodies.

Finally, from the reduced surface traction, two threshold values are obtained: the Hertzian ΦH
and the SFP ΦS limits. To summarize these results, a phase diagram is depicted in figure 8 in
which axes correspond to the surface fraction Φ and the reduced indentation ζ/h. The SFP and
Hertzian contact regions, which had been discerned from the numerical results, are shown. In
brief, for a given indentation ζ , if the surface fraction Φ is greater than ΦH, the Hertzian contact
offers a good approximation of the discrete contact phenomenon, whereas, if Φ is smaller than
ΦS, the system must have only one pillar in contact with the lens. In addition, also illustrated in
figure 8, an analytical expression for the SFP threshold has been deducted from purely geometric
considerations, which shows a good agreement with the numerical results, mainly in the large
indentations regime. In this region, a simple theoretical approximation is also represented,
for which the effect of the elastic parameters seems to be negligible. According to the theory
developed by Greenwood and colleagues [5,6] based on a statistical approach, the dimensionless
parameter α =Ra/ζ , which is the ratio between the RMS roughness of the surfaces in contact Ra

and the total indentation ζ , indicates the influence of the roughness on the contact mechanics. For
the hexagonal array of cylinders, as the sphere is considered to be smooth, Ra = h/2, yielding the
expression for the Greendwood dimensionless parameter

α = h
2ζ

. (7.1)

Considering a threshold value of α, which has been given the empirical value of α = 0.05 [6],
below which the Hertz theory can be applied with confidence, a vertical line in the phase diagram
shown in figure 8 at the value of ζ/h = (2α)−1 is found. Even though this assumption should be
valid for large indentations ζ/h ≥ 10, also corresponding to large contact regions, this procedure
wipes out completely the impact of the surface fraction Φ, at the indentation regime presented
here. Fortunately, a second dimensionless parameter μ is also proposed by Greenwood and
colleagues [5,6], required to forecast precisely the contact behaviour. For rough nominally flat
surfaces, μ depends only on the geometry, i.e. the roughness, the asperity density and the RMS
curvature of the asperities, and only generates a secondary effect on the stress and displacement
fields when the contact zone spans infinitely compared with the nominal size of the asperities.
For the case presented herein, we expect that μ will take the form μ ∼ Φ

√
RRa/d, which leads to

an estimation of the second Greenwood dimensionless parameter:

μ ∼ Φ

d

√
Rh
2

, (7.2)

where the effect of the surface fraction Φ appears directly.
Thus, this analysis, which is a result of the qualitative comparison with Greenwood’s theory,

indicates that Φ and ζ/h are the correct dimensionless parameters required to describe the passage
from Hertzian to SFP contact on periodically rough surfaces.

The methodology that we have developed allowed us to gain some insight on the discrete
contact phenomenon. Nevertheless, it only represents some first steps and several important
issues remain to be addressed. For instance, the case of large indentations, which are comparable
in size with the height of the pillars ζ ∼ h, must be analysed separately. Under these
circumstances, an intimate contact between the lens and the patterned surface, which has been
studied with experiments [3,31,33,41], may be triggered, and the role of adhesion should be taken
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into account. Our efforts are currently being focused on this problem, and the corresponding
analysis will be presented in a future publication.
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