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Abstract. We study the temporal response of the electric current in an elec-
trolyte under a sudden switch on or switch off of an external electric field of
arbitrary magnitude. We use Stochastic Density Functional Theory including
hydrodynamic interactions to express the current as a function of the ionic cor-
relations. Assuming small density fluctuations, we linearize the field theory to
compute the correlations in the transient regime. We first show that the correla-
tions do not follow the same trajectory when the field is switched on or switched
off. Accordingly, the behavior of the current differs in the two cases: it decays
exponentially when the field is switched off, but it relaxes algebraically to its
stationary value when the field is switched on. This difference is a non-linear
effect since an exponential relaxation is recovered in both cases in the weak field
limit.
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1. Introduction

Determining the response of an electrolyte to an external field is a century-old non-
equilibrium statistical physics problem. Its theoretical exploration started with the
works of Debye and Hückel [1], and later of Onsager [2], who settled the so-called DHO
theory for the weak field conductivity of electrolyte solutions. The finite field solution
was provided thirty years later by Onsager and Kim [3]. The DHO theory contains two
corrections to the naive conductivity, which arise from the correlations between ions: the
first, which we call the electrostatic correction, comes from the electric field generated
by the disturbed cloud of counterions surrounding a given ion. The second, which we
call the hydrodynamic correction, takes into account the hydrodynamic flow generated
by the cloud of counterions.
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The study of the conductivity of electrolytes has been revived recently. First,
stochastic density field theory (SDFT) has been used to compute the ionic correla-
tions in the absence of hydrodynamic interactions, giving access to the electrostatic
correction to the conductivity [4, 5]. Then, SDFT has been coupled with fluctuating
hydrodynamics, providing a stochastic field theory for the ionic densities and the flow,
allowing to derive the electrostatic correction together with the hydrodynamic one [6,
7]. These more systematic approaches allowed further progress, such as taking into
account the finite size of the ions using a slight modification of the interaction kernel,
leading to quantitative predictions up to large densities [8, 9], or unveiling long range
forces between objects immersed in a driven electrolyte [10]. In parallel, the effect of
the correlations on the conductivity has been studied through numerical simulations,
on lattice [11] or using molecular dynamics [12, 13], with an implicit or explicit solvent.

The above mentioned works addressed the non-equilibrium stationary state (NESS)
of a driven electrolyte. Under a time-dependent driving, new interesting effects appear,
such as a long-ranged repulsion between oppositely charged surfaces under a periodic
driving [14], or synapse-like memory effects in strongly confined electrolytes [15, 16],
and ‘magnetolytes’ in spin ice become formally equivalent to an electrolyte [17]. To
date, there are only few examples where the field theoretic machinery described above
has been used to study transient effects in electrolytes. One is the calculation of the
transient fluctuations induced forces between two objects immersed in a driven electro-
lyte upon a sudden field change [18]; however, the hydrodynamic interactions have been
neglected and the calculation of transient correlations limited to distances much larger
than the Debye length. Other related examples are the calculations of the relaxation of
the Casimir force between two polarizable slabs or two conducting plates [19, 20], but
in those cases the transition takes place between two equilibrium states.

Here, we use SDFT with hydrodynamic interactions [5, 7] to study the evolution of
the electric current in a bulk electrolyte when the external field is suddenly switched on
or off. First, we show that the correlations do not follow the same path when the sys-
tem goes from equilibrium to NESS, or from NESS to equilibrium. Second, we turn to
the current, and in particular to the electrostatic and hydrodynamic corrections. From
NESS to equilibrium, the hydrodynamic correction is absent at the leading order in the
density fluctuations, and we find that the electrostatic correction decays exponentially.
In contrast, from equilibrium to NESS, we unveil an algebraic decay of both correc-
tions. At linear order in the field, the corrections decay exponentially, showing that the
algebraic decay is a non-linear effect. Finally, we discuss the relationship between the
relaxations of the correlation and of the current.

This article is organized as follows. The model is introduced in section 2. In section 3
we obtain a closed equation for the density fields of the ions, express the electric cur-
rent as a function of the correlations of the density fields, and derive and solve the
equation for the correlations in the transient regime, assuming Gaussian density fields.
We compute and analyse the corrections from NESS to equilibrium in section 4, and
from equilibrium to NESS in section 5. We conclude in section 6.
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2. Model

We consider a system of charged Brownian particles of different species in a three
dimensional homogeneous solution, subjected to a uniform external electric field with a
time dependent amplitude E(t) = E(t)êx, where êx is the unit vector along the x -axis.
The particles interact via the electrostatic potential and are advected by the flow in the
solution, which is generated by the forces transmitted by the particles on the solvent.
We denote ρ̄α the average density of the particles of the species α, κα their mobility
and qzα their charge, with q being the elementary charge. We assume that the system
is electroneutral:

∑
α zαρ̄α = 0.

We describe the evolution of the density field ρα(x, t) of the species α using Stochastic
Density Functional Theory [4, 5] with hydrodynamic interactions [6, 7]:

ρ̇α = −∇ · jα, (1)

jα = uρα−Tκα∇ρα +καραfα +
√

καTραζα (2)

where u(x, t) is the velocity field of the solution, T is the temperature (we set the
Boltzmann constant to kB = 1) and fα(x, t) is the force acting on the particles of
the species α. The noise term ζ(x, t)is a Gaussian white noise vector field with the
correlation

⟨ζα,i(x, t)ζβ,j(x ′, t ′)⟩ = 2δαβδijδ(x−x ′)δ(t− t ′), (3)

where i and j denote the spatial components.
We use the Itô convention for the multiplicative noise in equation (2) and throughout

the manuscript [4, 21].
The force on the particles of the species α is the sum of the force exerted by the

external field and the force due to pair interactions:

fα = zαqE−
∑
β

∇Vαβ ∗ ρβ, (4)

where Vαβ(x) = q2zαzβ/(4πϵr) is the electrostatic interaction, with r = |x|, ϵ the dielec-
tric permittivity of the solvent, and ∗ the convolution operator.

We assume that the fluid velocity field u(x, t) satisfies the fluctuating Stokes
equation for incompressible fluids [22] (section 3.2):

∇·u = 0 (5)

−η∇2u−∇p =
∑
α

ραfα +
√

ηT∇·
(
ν +νT) (6)

where ν(x, t) is a Gaussian noise tensor field with correlation function:

⟨νij(x, t)νkl(x ′, t ′)⟩ = δikδjlδ(x−x ′)δ(t− t ′). (7)

https://doi.org/10.1088/1742-5468/acdced 4
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We will compute the total average electric current J(t),

J = q
∑
α

zα⟨jα⟩ = J êx, (8)

and then discuss the correction to the current without interactions, σ0E, where σ0 =
q2
∑

α z
2
ακαρ̄α is the bare conductivity of the solution. In particular, we are interested

in the evolution of the current J (t) when the electric field is suddenly switched on
(E(t) = E0H(t), where H (t) is the Heaviside function), or off (E(t) = E0H(−t)). In the
first case, the system goes from equilibrium with E = 0 to a non-equilibrium stationary
state (NESS) with E = E0; in the second case, the system relaxes from an NESS to
equilibrium.

3. Correlations and electric current

3.1. Closed equations for the density fields

We can integrate the fluid degrees of freedom u to obtain a closed equation for the
densities ρα. The solution to equations (5) and (6) is given by the convolution of the
force density (the right hand side of equation (6)) with the Oseen tensor, Oij(x) =

1
8πη (

δij
r +

xixj

r3 ) [23 (chapter 2)]. Inserting this result in the expression for the density

current, equation (2), we get

jα = −καT∇ρα +καραfα + ρα
∑
β

O∗
[
ρβfβ

]
+
√
καTραζα +

√
ηTραw (9)

where we have introduced the Gaussian noise vector field w(x, t) with correlation

⟨wi (x, t)wj(x
′, t ′)⟩ = 2Oij(x−x ′)δ(t− t ′). (10)

Equations (1), (3), (9) and (10) form a closed set of equations for the densities.
Our procedure is however not completely correct: when a force is applied on a

particle, it gives rise to a flow that is given by the Oseen tensor. However, this flow
diverges at the location of the particle, giving the particle an infinite velocity [24].
Moreover, the motion of the particle resulting from the application of the force is already
taken into account by the mobility of the particle. Hence, when computing the flow
advecting a given particle, one should take care to omit the flow created by the forces
acting on this particle. There is no simple way to do it in our field theory, but this flaw is
easily corrected when the electric current is expressed with the correlations (see below).

3.2. Average electric current from correlations

Using the expression (9) in the average electric current (equation (8)) leads to

J = q
∑
α

zα

⟨
καραfα + ρα

∑
β

O∗
[
ρβfβ

]⟩
. (11)

https://doi.org/10.1088/1742-5468/acdced 5
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Note that the noise terms cancel as they are uncorrelated to the density fields and the
gradient term cancels as we assume spatial invariance.

We now express the average electric current as a function of the correlations of the
density fields. We introduce the density fluctuations nα(x, t),

ρα(x, t) = ρ̄α +nα(x, t), (12)

and the correlation

Cαβ(x−x ′, t) = ⟨nα(x, t)nβ(x ′, t)⟩ = Cαβ(x−x ′, t) + ρ̄αδαβδ(x−x ′) (13)

where C is the pair correlation function, which does not contain the self correlation.
Using electroneutrality, the average electric current (equation (11)) can be expressed

with the density fluctuations,

J = σ0E−
∑
α,β

qzακα⟨nα∇Vαβ ∗nβ⟩+
∑
α,β

q2zαzβ⟨nαO∗nβ⟩E

−
∑
α,β,γ

qzα⟨nα [O∗ (nβ[∇Vβγ ∗nγ])]⟩. (14)

Writing the convolutions explicitly and using the correlation (equation (13)), we arrive
at

J = σ0E−
∑
α,β

qzακα

ˆ
∇Vαβ(x)Cαβ(x)dx+

∑
α,β

q2zαzβ

ˆ
O(x)Cαβ(x)dxE

−
∑
α,β,γ

qzα

ˆ
O(x)∇Vβγ(x ′)C

(3)
αβγ(x,x ′)dxdx ′, (15)

where we have introduced the three-point correlation C
(3)
αβγ(x−x ′,x ′−x ′ ′) =

⟨nα(x)nβ(x ′)nγ(x ′ ′)⟩.
The correction to the bare current σ0E is the sum of three contributions:

• The first involves the correlation and the electrostatic potential, we call it the elec-
trostatic correction (it was originally called the relaxation correction). It represents
the effect of the electric field of the cloud of counterions around a charged particle,
which is deformed when an external field is applied.

• The second term involves the correlation, the Oseen tensor, and the external field,
we call it the hydrodynamic correction (it was originally called the electrophoretic
correction). It contains the effect of the flow created by the cloud of counterions
under the action of the external field.

• The last term combines electrostatic and hydrodynamic effects: it contains the effect
of the flow created by the counterions under the action of electrostatic interactions
between the particles. As electrostatic and hydrodynamic interactions are involved,
their interaction kernels are coupled to the three-point correlation C(3).

https://doi.org/10.1088/1742-5468/acdced 6
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At this stage, we can make the correction mentioned in section 3.1: remove the effect of
the flow that is generated by a particle on this same particle. In the hydrodynamic cor-
rection, this is done by replacing the correlation Cαβ(x) by the pair correlation Cαβ(x)
(see equation (13)), which removes a term proportional to O(0). In the last term of

equation (15), it is done by substracting δαβδ(x)Cβγ(x ′) to C
(3)
αβγ(x,x ′). However, as

we will compute the correlations in the Debye–Hückel limit where the odd correlations
vanish, it is not necessary to remove this term. Finally, note that replacing the correla-
tion Cαβ(x) by the pair correlation Cαβ(x) does not affect the electrostatic correction,
allowing us to use the pair correlation in both corrections:

J = σ0E−
∑
α,β

qzακα

ˆ
∇Vαβ(x)Cαβ(x)dx+

∑
α,β

q2zαzβ

ˆ
O(x)Cαβ(x)dxE

−
∑
α,β,γ

qzα

ˆ
O(x)∇Vβγ(x ′)C

(3)
αβγ(x,x ′)dxdx ′. (16)

Using the Parseval-Plancherel theorem and writing explicitly the time dependencies,
we get

J(t) = σ0E(t) +
∑
α,β

qzακα

ˆ
ikṼαβ(k)C̃αβ(k, t)

dk
(2π)d

+
∑
α,β

q2zαzβ

ˆ
Õ(k)C̃αβ(k, t)

dk
(2π)d

E(t)

+
∑
α,β,γ

qzα

ˆ
Õ(k)ik ′Ṽβγ(k ′)C̃

(3)
αβγ(k,k ′, t)

dkdk ′

(2π)2d
. (17)

We have used the fact that the Fourier transforms Ṽαβ(k) =
q2zαzβ
ϵk2 and Õij(k) = 1

ηk2 (δij −
kikj
k2 ) are even: Ṽαβ(k) = Ṽαβ(−k) and Õ(k) = Õ(−k).

Now that we have expressed the correction to the bare current as a function of the
correlations, we need to evaluate the correlations.

3.3. Correlations in the Debye-Hückel limit

The density correlations cannot be computed exactly. To evaluate them, we assume
small density fluctuations |nα| ≪ ρ̄α and take the Debye-Hückel limit, which amounts
to linearize the deterministic terms in the current equation (9) and remove the fluctu-
ations in front of the noise terms [5, 6]. Linearizing equation (9) and plugging it into
equation (1), we get

ṅα = καT∇2nα−καqzαE ·∇nα +καρ̄α∇2

∑
β

Vαβ ∗nβ

+
√

καT ρ̄α∇· ζα. (18)

https://doi.org/10.1088/1742-5468/acdced 7
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Note that at this order, the terms coming from the hydrodynamic interaction dis-
appear as the Oseen tensor and noise correlation function are divergence free. The
fluctuations nα(x, t) are now Gaussian fields, so that odd correlations such as C(3) are
zero.

We now write the dynamics in Fourier space:

˙̃nα = −καTk
2ñα + iκαqzαE ·kñα−καρ̄αk

2
∑
β

Ṽαβñβ +
√
καT ρ̄αik · ζ̃α. (19)

The dynamics of the fluctuations, equation (19), can be written in a vectorial form:

˙̃n = −RAñ+χ, (20)

where Rαβ(k) = δαβ ρ̄ακαk
2 is the mobility matrix and Aαβ(k) = δαβ

T
ρ̄α

(
1 + i zαqE·k

Tk2

)
+

Ṽαβ; we have introduced the scalar Gaussian noise χα(x, t) with correlation

⟨χα(k, t)χβ(k ′, t ′)⟩ = 2(2π)dTRαβ(k)δ(k+k ′)δ(t− t ′). (21)

In Fourier space, the correlation is given by

⟨ñα(k, t)ñβ(k ′, t)⟩ = (2π)dδ(k+k ′)C̃αβ(k, t). (22)

Using the Itô product rule on equation (20) we find that the correlation C̃ follows
(appendix A)

˙̃C = 2TR−RAC̃ − C̃A∗R, (23)

where A∗ is the complex conjugate of A. This is a differential Lyapunov equation [25]
and can be casted into a system of ordinary differential equations.

When the electric field is constant over the time interval [0, t], which is the case for
a switch on or a switch off of the field at t = 0, the solution to equation (23) is given by

vec
(
C̃(t)

)
= e−Mt

[
vec
(
C̃(0)

)
− 2TM−1vec(R)

]
+ 2TM−1vec(R), (24)

where M = [I ⊗ (RA) + (RA∗)⊗ I]. The symbol ⊗ is the tensor product and vec(·) is
the vectorization operator. Another option would have been to integrate the differential
linear equation (20) and then take the average, leading to the solution (24) [18–20].

3.4. Binary monovalent electrolytes: dimensionless form

We restrict ourselves to the case of a binary monovalent electrolyte, where both species
have the same mobility: α = {+,−}, z+ = −z− = 1, ρ̄α = ρ̄, and κα = κ.

We nondimensionalize equation (23) by setting C̃ = ρ̄c̃ and k = s/λD where λD =√
Tϵ/(2q2ρ̄) is the Debye length. Then we rescale time by the Debye time tD = λ2

D/(κT ),

https://doi.org/10.1088/1742-5468/acdced 8
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t = tDτ . We rewrite the external field to separate the magnitude from the time depend-
ence E(t) = E0g(t) and introduce the dimensionless field f = qλDE0/T . The rescaled
correlation cαβ(τ) follows

˙̃c = 2s2 −ωc̃− c̃ω∗, (25)

where we have introduced the matrix ω, which is a dimensionless version of RA:

ωαβ(s) = δαβ
(
s2 + izαfsx

)
+

zαzβ
2

. (26)

Explicit expressions of the dimensionless correlations from equation (24) are given in
appendix B for the NESS to equilibrium and equilibrium to NESS cases.

Applying the same scaling to the current J(τ) (equation (17)) we find:

J(τ)

σ0E0
= g(τ) +

1

ρ̄λ3
D
γel(τ,f) + g(t)

rs
λD

γhyd(τ,f), (27)

where rs = (6πηκ)−1 is the hydrodynamic radius of the charged particles, and the elec-
trostatic and hydrodynamic corrections read, respectively,

γel(τ,f) = − 1

16π2f

ˆ ∞

0

ds
ˆ 1

−1

du isu
∑
α,β

zα [c̃αβ(s,u,τ,f)− δαβ] , (28)

γhyd(τ,f) =
3

4π

ˆ ∞

0

ds
ˆ 1

−1

du
(
1−u2

)∑
α,β

zαzβ [c̃αβ(s,u,τ,f)− δαβ] . (29)

We have introduced the variable u = sx/s. The dimensionless parameters in front of
the correction terms in equation (27) imply that none can by neglected, and we study
them separately. Note that the electrostatic correction involves the odd part of the
correlations, as the prefactor is odd in the variable u, while the hydrodynamic correction
involves the even part of the correlation.

The hydrodynamic correction is multiplied by the time dependence of the electric
field, g(t), hence it is absent in the transition from NESS to equilibrium: in the Debye-
Hückel limit, hydrodynamic interactions do not affect the current during equilibration.
In general, hydrodynamic interactions do affect the current during equilibration due to
the last term in equation (15), which is of third order in the fluctuations and disappears
in the Debye-Hückel limit.

The corrections in the stationary state have been computed previously [3, 5]:

γ∞
el = − 1

32πf 3

[
f
√
f 2 + 1−

√
2f + tan−1

(√
2f
)
− tan−1

(
f√

f 2 + 1

)]
, (30)
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Figure 1. Evolution of the correlation c−+(x) in a binary monovalent electrolyte
for f = 1, from equilibrium to NESS (top row), and from NESS to equilibrium
(bottom row). The field is oriented along x.

γ∞
hyd = − 1√

2
−

3
(√

2−
√
f 2 + 1

)
8f 2

− 3

4f
sinh−1(f)

+
3(1 + 2f 2)

8f 3

[
tan−1

(√
2f
)
− tan−1

(
f√

f 2 + 1

)]
. (31)

3.5. Correlations from equilibrium to NESS and back

We present the evolution of the pair correlations for different species, c+−, for the
transitions from equilibrium to NESS, and from NESS to equilibrium, in figure 1. We
see that the trajectory from NESS to equilibrium is not the inverse of the trajectory
from equilibrium to NESS. In particular, it seems that from NESS to equilibrium, the
correlation quickly becomes symmetric before slowly relaxing to its equilibrium value.
In the next sections, we focus on the behavior of the conductivity, which we finally
compare to the evolution of the correlation.

4. From NESS to equilibrium

We start by studying the dynamics of the conductivity as a response to a sudden switch
off of the electric field (NESS to equilibrium). We solve equation (25) under f = 0 with
the initial condition being the stationary state solution to equation (25) for a finite value
of f. After the switch off of the field, the bare current is zero, hence the only current
comes from the out of equilibrium correlations through the electrostatic correction, as
there is no hydrodynamic correction in this case.
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Figure 2. Electrostatic correction term γel(τ) from NESS to equilibrium
(equation (32), integrated numerically) as a function of time for different values
of the field f.

By plugging the solution of equation (25) as described to equation (28), we find that
the electrostatic correction is

γel(τ) = − 1

8π 2f

ˆ ∞

0

ds
ˆ 1

−1

du s2u2e−(2s2+1)τ

(2s2 + 1)
(
f 2u2 + s2 + 1

) . (32)

This integral is integrated numerically with the package Quadpack implemented in
SciPy [26, 27]; it is plotted as a function of time in figure 2. Differentiating equation (32),
one can show that the correction decays monotonically, as seen in figure 2.

At short time, the electrostatic correction behaves as

γel(τ) ∼
τ→0

√
τ

12
√

2π 3/2
. (33)

At long times, it decays exponentially,

γel(τ) ∼
τ→∞

−
e−τ
[
f − tan−1(f)

]
32
√

2π 3/2f 3τ 3/2
, (34)

with a field dependent prefactor that is constant at weak field and decays as f −2 at
large field (figure 3).

As a conclusion, after a switch off of the external field there is a recoil coming from
the electrostatic correction. This recoil decays exponentially on the time scale of the
Debye time. This decay is compatible with the evolution of the correlations (figure 1):
the antisymmetric part, which enters in the electrostatic correction, indeed seems to
decay on the time scale of the Debye time.

5. From equilibrium to NESS

We now turn to the dynamics of the conductivity after a sudden switch on of the
electric field, the system being initially in its equilibrium state. Here both electrostatic
and hydrodynamic corrections are present, and we study them separately.
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Figure 3. Field dependency of the electrostatic correction γel(τ) at large time.
Analytical result (equation (34), solid line) and from numerical integration of
equation (32) at τ = 100 (dots).

5.1. Electrostatic correction

The integrand of γel in equation (28), which we denote y(s,u,f,τ) is obtained from the
solution (24):

y(s,u,f,τ) =
2f s2u2e−τ(2s2+1)

(s2 + 1)(2s2 + 1)
(
f 2u2 + s2 + 1

)
(1− 4f 2s2u2)

[
−
(
f 2u2 + s2 + 1

)
+ f 2u2

(
2s2 + 1

)((
2s2 + 1

)
cosh

(
τ
√

1− 4f 2s2u2
)

+
√

1− 4f 2s2u2 sinh
(
τ
√

1− 4f 2s2u2
))]

+
2f s2u2

(2s2 + 1)
(
f 2u2 + s2 + 1

) . (35)

The last term in y is independent of time and corresponds, after integration, to the
stationary state result γ∞

el (equation (30)). Note that the integrand is regular at the
pole corresponding to 4s2u2f 2 = 1 (appendix C).

The electrostatic correction is integrated numerically and shown as a function of
time in figure 4(a) for different values of the field. Contrary to the monotonic behavior
from NESS to equilibrium, here we observe an overshoot of the conductivity, which
has a global minimum, lower than the stationary state value γ∞

el . The time location of
the minimum as a function of the field, τ ∗

el(f ), is shown in figure 4(b): we see that the
minimum is always present and that it occurs sooner and sooner as the field increases.
We also observe in figure 4(a) that the correction converges to a well defined limit at
weak field, which corresponds to the linear response of the system. We now focus on
the short and long time behaviors of the correction.

5.1.1. Short time limit. The behavior of the conductivity can be obtained by the
change of variables w =

√
τs followed by a Taylor expansion of the integrand to lowest

order around τ → 0, leading to
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Figure 4. (a) Electrostatic correction γel(τ) from equilibrium to NESS from numer-
ical integration of equation (28), for different values of the field f. (b) Times τ∗el(f )
and τ∗hyd(f ) of the extrema of the electrostatic and hydrodynamic corrections, as a
function of the magnitude of the external field f. Numerical evaluation of the time
location of the extrema for the electrostatic correction (blue points) and for the
hydrodynamic correction (orange points), and weak field asymptotics (54) (solid
line).

Figure 5. Short time behavior of the electrostatic correction. Numerical integ-
ration for different values of the field (solid lines) and short time asymptotics
(equation (37), dashed line).

γel(τ) ∼
τ→0

− 1

16π2

√
τ

ˆ ∞

0

dw
ˆ 1

−1

duu2 1− e−2w2

w2
. (36)

Note that to obtain the asymptotic form, the stationary state part of the integrand
in equation (28) cannot be computed separately, but has to be part of the expanded
expression. Evaluating the integral gives

γel(τ) ∼
τ→0

−
√
τ

12
√

2π
3
2

. (37)

The short time asymptotics is compared to the numerical integration in figure 5. We
recover the square root dependence observed from NESS to equilibrium. Interestingly,
the short time asymptotics does not depend on the field; as this is the correction to the
conductivity, it means that the short time response is linear. However, the higher the
field, the sooner the conductivity departs from the short time asymptotics.
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Figure 6. Long time behavior of the electrostatic correction. (a) Difference with
the stationary value as a function of time for different values of the field (solid lines)
and τ−3/2 power law (dashed line). Note that the correction is regular, the apparent
jump for f = 0.1 is due to the logarithmic scale. (b) Prefactor of the algebraic decay
as a function of the field f from numerical integration (blue points), from the long
time asymptotics (equation (39), solid line), and small and large field asymptotics
(dashed lines).

5.1.2. Long time limit. To estimate the behavior of the conductivity at long times,
we first separate the time independent part in the integrand (35), which integrates to
γ∞

el . The remaining time dependent part of the integrand gives us access to the large
time asymptotic behavior of the conductivity. We perform the same change of variables
w =

√
τs and then expand the integrand to the lowest order around τ →∞, yielding

γel(τ)− γ∞
el ∼

τ→∞
− 1

16π2

1

τ 3/2

ˆ ∞

0

dw
ˆ 1

−1

du2w2u4f 4e−2w2(
f 2u2 + 1

) e−2f 2w2u2

. (38)

Evaluating the integral gives

γel(τ)− γ∞
el ∼

τ→∞
−

3
(
f 2 + 1

)3/2 sinh−1(f)− 4f 3 − 3f

96
√

2π 3/2f 3
(
f 2 + 1

)3/2
τ 3/2

. (39)

The algebraic decay of the electrostatic correction is visible in the numerical evaluation
in figure 6(a); the prefactor obtained from the numerical evaluation is compared to the
expression (39) in figure 6(b).

Our main observation is that the relaxation of the electrostatic correction towards its
stationary value is algebraic, γel(τ)− γ∞

el ∼ τ−3/2, contrary to the exponential relaxation
when going from NESS to equilibrium. This algebraic behavior is reminiscent of the one
seen for the relaxation of the long range force between two boundaries of an electrolyte
in the same configuration [18]. As the prefactor of the algebraic decay goes to zero as the
field goes to zero, it is a non-linear effect. To better understand the non-linear effects,
we now focus on the weak field limit.
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5.1.3. Weak field limit. The weak field limit of the electrostatic correction can be
obtained by expanding the integrand (35), leading to

γel =
∞∑
n=0

f 2nγ
(2n)
el . (40)

The first two terms are

γ
(0)
el (τ) = −

√
2erfc(

√
τ)− 2eτerfc

(√
2τ
)

+ 2−
√

2

48π
, (41)

γ
(2)
el (τ) =

1

20π

[
3− 2

√
2

4
+

4τ − 8eτ + 2e2τ + 3

4
erfc

(√
2τ
)

+

√
π erfc(

√
τ)− e−2τ

√
τ√

2π
− (1− e−τ )

2

2
√

2πτ

]
. (42)

The long time behavior of the lowest order term (equation (41)) is

γ
(0)
el (τ)− γ

∞(0)
el ∼

τ→∞

e−τ

96
√

2π3/2τ 3/2
. (43)

It decays exponentially, confirming that the algebraic decay at finite field is rooted in
the non-linear response.

The long time asymptotics (43) matches exactly the one obtained when going from
NESS to equilibrium (obtained from a weak field expansion of equation (34)). This is
also true for the short time asymptotics (33) and (37). This is no coincidence: expanding
the equation (25) for the correlation at weak field reveals that the NESS to equilibrium
and equilibrium to NESS trajectories are identical in the linear regime, where the system
remains close to equilibrium.

At the next order, the algebraic behavior is recovered,

γ
(2)
el (τ)− γ

∞(2)
el ∼

τ→∞
− 1

160
√

2π3/2τ 3/2
, (44)

in agreement with the f 2 dependence of the prefactor of the algebraic decay (figure 6(b)).

The lowest order term, γ
(0)
el (τ), is a decreasing function of τ , while the next order,

γ
(2)
el (τ), is increasing. The time location of the minimum, τ ∗

el, can be obtained at low
field by comparing these two terms. As τ ∗

el seems to diverge as the field goes to zero
(figure 4(b)), it is sufficient to use the long time asymptotics, equations (43) and (44).

Differentiating the long time asymptotics of γ
(0)
el (τ) + f 2γ

(2)
el (τ) gives the following

equation for the time location of the minimum: 9f 2eτ − 10τ − 15 = 0. To leading order
in f, the solution is

τ ∗
el(f) ∼

f→0
−2 log(f). (45)
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Figure 7. Hydrodynamic correction γhyd(τ) from equilibrium to NESS from numer-
ical integration of equation (29) for different values of the field f

This asymptotic behavior is compared to the numerical evaluation of the time location
of the minimum in figure 4(b).

5.2. Hydrodynamic correction

The integrand of γhyd in equation (29), which we denote h(s,u,f,τ) is obtained from
the solution (24):

h(s,u,f,τ) = −
f 2s2u2

(
u2 − 1

)
e−τ(2s2+1)

(s2 + 1)(2s2 + 1)
(
f 2u2 + s2 + 1

)
(1− 4f 2s2u2)3/2

×
(
− 4
(
f 2u2 + s2 + 1

)√
1− 4f 2s2u2

+
(
2s2 + 1

)[
2f 2u2

(√
1− 4f 2s2u2 + 2s2

)
+
√

1− 4f 2s2u2 − 1
]
× eτ

√
1−4f 2s2u2

+
(
2s2 + 1

)[
2f 2u2

(√
1− 4f 2s2u2 − 2s2

)
+
√

1− 4f 2s2u2 + 1
]

× e−τ
√

1−4f 2s2u2

)
+

2
(
u2 − 1

)(
f 2u2 + 2s2 + 1

)
(2s2 + 1)

(
f 2u2 + s2 + 1

) . (46)

The last term in h is independent of time and corresponds to the stationary state
correction γ∞

hyd (equation (31)).
The hydrodynamic correction is integrated numerically and shown as a function of

time in figure 7. The main difference with the electrostatic correction is the finite value
at τ = 0. This is due to the fact that the hydrodynamic correction involves the even
part of the correlation, which is finite for the equilibrium initial condition. As for the
electrostatic correction, the relaxation towards the stationary value is non-monotonic;
the time location of the maximum as a function of the field is plotted in figure 4(b). We
now study the short and long time behaviors of the correction.

5.2.1. Short time limit. Using the same method as for the electrostatic correction, we
find the short time behavior of the hydrodynamic correction. We find γhyd(τ) →

τ→0
−1

and
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Figure 8. Short time behavior of the hydrodynamic correction. Numerical integ-
ration for different values of the field (solid lines) and short time asymptotics
(equation (47), dashed line).

γhyd(τ) + 1 ∼
τ→0

2

15

√
2

π
f 2τ 3/2; (47)

it is compared to the numerical integration in figure 8. The short time evolution is
slower than for the electrostatic correction and depends on the field. We also observe
that the departure from the short time asymptotics occurs sooner for a larger field.

5.2.2. Long time limit. To estimate the behavior of the hydrodynamic correction at
long times, we first separate the time independent part in the integrand (46), which
integrates to γ∞

hyd. The remaining time dependent part of the integrand gives us access
to the large time asymptotic behavior of the conductivity. We perform the same change
of variables, w =

√
τs and then expand the integrand to the lowest order around τ →∞,

yielding

γhyd(τ)− γ∞
hyd ∼

t→∞

1

16
√

2πτ 3/2

[
15 + 6f 2

f 3
sinh−1(f)− 15 + 11f 2

f 2
√
f 2 + 1

]
. (48)

This asymptotics is compared to the numerical integration in figure 9(a). We find again
an algebraic relaxation towards the stationary value, with the same exponent 3/2 as
for the electrostatic correction. Similarly, the prefactor goes to zero as the field goes to
zero (figure 9(b)), indicating that the algebraic decay is a non-linear effect.

5.2.3. Weak field limit. The weak field limit of the hydrodynamic correction can be
obtained by expanding the integrand (46), leading to

γhyd =
∞∑
n=0

f 2nγ
(2n)
hyd . (49)

The lowest order term is γ
(0)
hyd(τ) = −1. It relaxes instantaneously, so that its difference

with its value in the stationary state is zero, mirroring the absence of the hydrodynamic
correction when going from NESS to equilibrium. This instantaneous relaxation also
shows that the algebraic decay is, as for the electrostatic correction, a non-linear effect.
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Figure 9. Long time behavior of the hydrodynamic correction. (a) Difference with
the stationary value as a function of time for different values of the field (solid
lines) and τ−3/2 power law (dashed line). (b) Prefactor of the algebraic decay as a
function of the field from numerical integration (blue points), from the long time
asymptotics (equation (48)), and small and large field asymptotics (dashed lines).

The following terms are

γ
(2)
hyd =

3−
√

8

10
+

1

10

[
(4τ − 4eτ + 1)erfc

(√
2τ
)

+
√

8erfc
(√

τ
)
−
√

8

π
e−2τ

√
τ

]
, (50)

γ
(4)
hyd =

3

280

(
16
√

2− 23
)

+
3

280

[
−
(
16τ 2 + 48τ − 64eτ + 8e2τ + 33

)
erfc

(√
2τ
)

− 16
√

2erfc
(√

τ
)

+ 2

√
2

π
e−2τ 4τ 2 + 11τ − 8eτ + 2e2τ + 6√

τ

]
. (51)

They behave at long time as

γ
(2)
hyd(τ)− γ

∞(2)
hyd ∼

τ→∞

e−2τ − 2e−τ

20
√

2πτ 3/2
, (52)

γ
(4)
hyd(τ)− γ

∞(4)
hyd ∼

τ→∞

3

140
√

2πτ 3/2
. (53)

Here, the algebraic decays appears at the fourth order in the field, in agreement with
the f 4 dependence of the prefactor of the algebraic decay (figure 9(b)).

Finally, as for the electrostatic correction, comparing the orders 2 and 4
(equations (52) and (53)) allows to find the asymptotic behavior of the time location of
the minimum at weak field:

τ ∗
hyd(f) ∼

f→0
−2 log(f). (54)

This asymptotics is the same as for the electrostatic correction figure 4(b).
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6. Conclusion

We have computed the transient ionic correlations in an electrolyte under a sudden
switch on or switch off of an external electric field of arbitrary magnitude using linearized
SDFT. We have shown that the correlations do not follow the same trajectory when the
field is switched on or switched off. We have deduced the electrostatic and hydrodynamic
corrections from the ionic correlations. When the field is switched off, the hydrodynamic
correction is absent and the electrostatic correction decays exponentially. This fast decay
seems to correspond to the fast decay of the odd part of the correlations; in contrast, the
even part of the correlations, which is not involved in the electrostatic correction, decays
slower. On the contrary, when the field is switched on, we found that both corrections
relax algebraically towards their stationary value, with the same exponent. In the linear
response regime, an exponential relaxation is recovered when the field is switched on,
showing that the algebraic relaxation is a non-linear effect.

The electrostatic and hydrodynamic corrections to the conductivity are given by the
ionic correlations (equations (28) and (29)), and we have discussed the relation between
the temporal behaviors of the correlations and the corrections. However, our discussion
of the evolution of the correlations has been limited to qualitative aspects, which is due
to their poor characterization in the NESS. Indeed, while the correlations are of the
Yukawa form at equilibrium, isotropic and exponentially decaying with distance, they
are long ranged in the NESS [10]. The algebraic decay of the correlations out of equilib-
rium has been shown to give rise to long ranged forces, but it has not been characterized
precisely in the stationary state, nor in the transient regime. A characterization such as
the one obtained for a driven binary mixture with short range interactions [28] would
help to pinpoint the role of the correlations in the asymmetric behavior unveiled here
when the field is switched on or off.

Finally, it would be interesting to understand how the results obtained here for a
sudden switch on or switch off of the electric field translate to different time dependen-
cies, such as an AC driving [14].
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Appendix A. Derivation of the equation for the correlations

In this appendix we derive the equation for the evolution of the correlations,
equation (23) (see [29], section 4.4). We start from the stochastic equation for the
density fluctuations, equation (20), which we write with the Itô integral notation [21]:

dñ(k) = −R(k)A(k)ñ(k)dt+ dχ(k). (A.1)

We then differentiate the definition of the correlations, (2π)dδ(k+k ′)C̃(k, t) =
⟨n(k, t)n(k ′, t)T⟩ (equation (22)), using the Itô formula [21]:

(2π)dδ(k+k ′)dC̃(k, t)

=
⟨
dñ(k, t)ñ(k ′, t)T + ñ(k, t)dñ(k ′, t)T + dχ(k)dχ(k ′)T⟩

= dt
[
−R(k)A(k)

⟨
ñ(k, t)ñ(k, t)T⟩− ⟨ñ(k, t)ñ(k, t)T⟩A(k ′)TR(k ′)T]

− dt2(2π)dTδ(k+k ′)R(k). (A.2)

Using that R(−k)T = R(k) and A(−k)T = A(k)∗, we obtain

dC̃(k) = [−R(k)A(k)C(k)−C(k)A(k)∗R(k) + 2TR(k)]dt, (A.3)

which is equation (23).

Appendix B. Correlations

Here, we give the dimensionless correlations obtained by solving equation (25) when
going from NESS to equilibrium, and equilibrium to NESS.

B.1. NESS to equilibrium

The correlations are:

c̃++ = − 1

2A
− f 2u2e−Bτ

2ABC
[B sinh(τ) + cosh(τ)] + 1, (B.1)

c̃+− = −f 2s2u2e−2Aτ

2ABC
− f 2u2e2τ−2Aτ

2BC
− if sueτ−2Aτ

BC
+

1

2A
, (B.2)

where A = 1 + s2 ; B = 1 + 2s2 and C = f 2u2 + s2 + 1. By symmetry, the other terms
are c̃−− = c̃++ and c̃−+ = c̃∗+−.

B.2. Equilibrium to NESS

The correlations are:

c̃++ =
f 2u2e−Bτ

2ABC∆

[
B2 cosh

(√
∆τ
)

+B
√

∆sinh
(√

∆τ
)
− 4Cs2

]
+

1

2BC
− 1

B
+ 1, (B.3)
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c̃+− =
f ue−Bτ

2ABC∆

[
B
√

∆f usinh
(√

∆τ
)

(B− 2if su)

+Bf ucosh
(√

∆τ
)

(∆− 2iBf su) + 2iCs

]
+

1

2C
+

if su

BC
, (B.4)

where A = 1 + s2 ; B = 1 + 2s2 ; C = f 2u2 + s2 + 1 and ∆ = 1− 4f 2s2u2. The other
terms are c̃−− = c̃++ and c̃−+ = c̃∗+−.

Appendix C. Regularity of the integrands from equilibrium to NESS

The integrands of the electrostatic and hydrodynamic corrections, equations (35)
and (46), seem at first sight to be singular when 1− 4f 2s2u2 approaches zero. However,
they are continuous and their limits are

y =
2f 3u4e

−τ
(

1
2f 2u2 +1

)
(2f 2u2 + 1)3 (4f 2u2 + 1)

×
[(

2f 2τu2 + τ
)2

+
(
8f 2u2 + 2

)
e
τ
(

τ
2f 2u2 +1

)

− 8f 2u2 + 4τ
(
2f 4u4 + f 2u2

)
− 2

]
, (C.1)

h = −
4f 2u2

(
u2 − 1

)
(2f 2u2 + 1)3 (4f 2u2 + 1)

×
[
f 2u2e

τ
(
− 1

2f 2u2 −1
)((

2f 2τu2 + τ
)2 − 2τ

(
2f 2u2 + 1

)
−4f 2u2

)
− 2
(
8f 6u6 + 10f 4u4 + 6f 2u2 + 1

)]
. (C.2)

References

[1] Debye P and Hückel E 1923 Phys. Z. 24 305–25
[2] Onsager L 1927 Trans. Faraday Soc. 23 341–9
[3] Onsager L and Kim S K 1957 J. Phys. Chem. 61 198–215
[4] Dean D S 1996 J. Phys. A: Math. Gen. 29 L613–7
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[6] Péraud J-P, Nonaka A J, Bell J B, Donev A and Garcia A L 2017 Proc. Natl Acad. Sci. 114 10829–33
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