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I. INTRODUCTION 

The phenomenon of adhesion concerns the interaction of two condensed phases 
brought into contact with each other. It involves a surprisingly large variety of materials -
ranging from synthetic polymers to living cells and tissues. It is thought, for example, that 
the adhesive properties of external cellular membranes determine the main steps of an 
organism's development. 

The complexity of the phenomenon of adhesion, as well as the diversity of 
materials capable of adhesive interaction, mean that a whole series of monographs would 
be required to constitute a comprehensive treatise. The purpose of this paper is more 
modest. We aim to present simple views on polymer adhesion to readers who are not 
familiar with this field. We choose to do so on a specific example, namely the adhesion 
between two cross-linked elastomers (a cross-linked elastomer consists of long, flexible 
chain-like molecules which are interconnected at various points by cross-links to form a 
molecular network; the polymer medium is locally fluid but the macroscopic flow of the 
material is prevented by the cross-links). This choice is motivated by a number of reasons: 
(a) the possibility of describing the fracture of the adhesive junction between the two 
elastomers in terms of a simple model, (b) the existence of controlled experiments that can 
be compared with the predictions of the model, (c) the possibility of introducing concepts 
that are of interest for other polymer adhesion problems, and, finally, (d) the fact that 
adhesion between elastomers is a technologically important field. Several texts on polymer 
adhesion are avaible (Wu, 1982; Kinloch, 1987; Lee, 1991; Vakula and Pritykin, 1991). A 
good reference for the results of the last few years is the review article by Brown (1991). 

The problem we are interested in is represented on figure 1, where two chemically 
incompatible cross-linked elastomers A and B are in close contact. The interface between 
the two elastomers is strengthened by grafting some extra A chains (adhesion promoters) to 
the surface of the B elastomer. These chains - referred to as the connectors - cross the 
interface and penetrate into the bulk A elastomer. Note that since the two polymers (A) and 
(B) are incompatible, each connector crosses the interface only once. This situation is 
referred to as the one-stitch problem (Raphael and de Gennes, 1992). The many-stitch 
problem has been investigated recently by Hong Ii and de Gennes (1993». As a crack 
grows along the interface, the connectors are progressively pulled-out from the elastomer 
A. This suction process gives rise to a fracture energy that is larger than the work of 
adhesion W due to intermolecular interactions (typically of the van der Waals type). The 
aim of the present study is to analyze the effect of chain pull-out on the adhesion of the two 
elastomers. 

The paper is organized as follows. Section II constitutes a brief introduction to 
linear elastic fracture mechanics. In section III we consider in detail the pull-out process. 
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Figure 1. The interface between the two elastomers is strengthened by grafting some extra A chains (degree 
of polymerization, N) to the surface of the B elastomer. 

The problem of a steadily growing crack along the interface between the two elastomers is 
analyzed in section IV. The paper ends with a discussion where comparison with the 
experimental results is made. 

D. LINEAR ELASTIC FRACTURE MECHANICS 

Let us consider a homogeneous, isotropic solid body. Under the action of applied 
forces, the solid body exhibit deformation. A point of initial position vector r (with 
components (x, y, z» has, after the deformation, a new position r' = r + u where u(x, y, z) 
is the displacement field. The strain tensor Uik is defined as (Landau and Lifshitz, 1986) 

(2.1) 

(with Xl = x, X2 = Y and X3 = z). In eqn (2.1) we have used the summation convention to 
suffixes occurring twice in an expression. Two neighboring points separated by a distance 
dl before the deformation are, after the deformation, separated by a distance dl' : 

(2.2) 

In the deformed body, internal stresses arise which tend to return the body to its original 
state. The force F per unit volume is given by 

(2.3) 

where (Jik is the stress tensor. 
For an linear elastic material the stress and strain tensors are related by (Hooke's 

law) 

(Jile = l (Uik + _v_ urmBik) 
l+v 1- 2v 

(2.4) 

where E is the Young's modulus and V the Poisson's ratio. 
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Consider now the problem of a crack embedded in a linear elastic material (fracture 
mechanics within the confines of materials that obey Hooke's law is known as linear 
elastic fracture mechanics) . The crack extends in the negative x-direction with its tip at x 
= o. The crack may be stressed in three different modes: (a) the cleavage or tensile-opening 
mode (mode I), (b) the in-plane shear mode (mode II), and (c) the antiplane shear mode 
(mode III), as depicted in figure 2. The superposition of the three modes describes the 
general case of loading. The mode I is technically the most important since it is the most 
commonly encountered and usually the one which most often results in failure (Kinloch, 
1987). The following discussion will therefore be confined to this situation. 

a b c 

Figure 2. Modes of loading. (a) Cleavage mode: mode I. (b) In-plane shear mode: mode II. (c) Antiplane 
shear mode: mode III. 

For a Mode I crack the tensile stress cr(x) ;: cryy(x,y = 0) and the crack displacement 
u(x) ;: uy(x,y = 0) are respectively given by (Kanninen and Popelar, 1985) 

cr(x) = ~ 
...J 21tx 

x>O (2.5) 

cr(x) = 0 x<O (2.6) 

and 

u(x) = 4KI ~ x<O (2.7) 
E*{2;; 

u(x) = 0 x>O (2.8) 

The material parameter E* is given by E* = E for plane stress conditions and E* = E/(1 -
v2) for plane strain conditions. These conditions are defined as follows: 

crzz = 0 plane stress (2.9) 

plane strain (2.10) 
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and Oxz = Oyz = 0 for both cases. In practice the state of stress near the crack tip varies from 
plane stress in a very thin specimen to plane strain near the center of a wide plate. 

The quantity KI is referred to as the stress intensity factor. It is a function of the 
applied loading and the geometry of the cracked body. Since the level of KI uniquely 
defines the stress field around the crack, Irwin (1964) postulated that the condition 

(2.11) 

represented a fracture criterion (i.e., fracture occurs when the value of KJ exceeds the 
critical value Kle). KIc is a material property and is often termed the fracture toughness. 

Another approach to obtain a criterion for fracture was obtained by Griffith (1920) 
and is based on an energy balance. Consider a Mode I crack of area A embedded in a linear 
elastic material. Let us imagine an infinitesimal propagation of the crack by an amount dA. 
In this process, part of the elastic energy U stored in the system is released. The work done 
by the external applied forces is dW. Griffith's hypothesis is that fracture occurs if and only 
if the strain energy release rate GI = (dW - dU)/dA is larger than a critical value Gle 

(2.12) 

The critical value Gle is called thefracture energy, or the critical strain energy release rate. 
It is a material parameter. 

As shown by Irwin (1964), a simple relationship exists between KIc and Gle : 

(2.13) 

Thus a critical KIc criterion is equivalent to a critical Gle criterion. 

III. CHAIN PULL-OUT PROCESS 

As a crack grows along the interface between the two elastomers, the connectors 
are progressively pulled-out from the material (the connectors are assumed not to break, 
but to slip out by a viscous process). The aim of the present section is to describe in detail 
this pull-out process. Let us first consider what happens when the two elastomers are 
separated by a uniform air gap of thickness h (figure 3). We will come back to fracture 
propagation in section IV. 
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Figure 3. The two elastomers submitted to a uniform tensile stress cr. 
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The p1ptially pulled-out chains are assumed to fonn single chain fibrils. The free energy 
e(h,n)'of a fibril containing n monomers is given by 

2 h2 
e(h,n) == "fA a n + kT -2-

a n 
(3.1) 

The first tenn corresponds to the energy cost for exposing the n monomers to the air (a is a 
monomer size and "fA is the interfacial energy between the bulk polymer A and the air). 
The second tenn in eqn (3.1) is a stretching tenn. Minimization of eqn (3.1) with respect to 
n gives 

(3.2) 

Since in practice "fA a2 == kT, the fibril is almost fully stretched. The corresponding value of 
the free energy is 

(3.3) 

Equation (3.3) shows that there is a minimum force f* required for a fibril to exist (Raphael 
and de Gennes, 1992): 

= kT ("fA a2)1!2 
f* - a kT (3.4) 

Suppose that a unifonn external tensile stress (] is applied to the elastomers (figure 3). The 
energy garea per unit area (as a function of the distance h between the two elastomers) has 
the fonn shown on figure 4, where W denotes the thennodynamic work of adhesion of the 
two elastomers in the absence of connectors: 

(3.5) 

(W is due to intennolecular interactions, typically of the van der Waals type). For h > a, 
the energy garea(h) is linear (see eqn (3.3)) 

(h >a) (3.6) 

where ~ is the number of connectors per unit interface area. As long as (] is smaller than 
the critical stress 

(3.7) 

the energy garea is minimal for h = 0 and the system remains closed. But as soon as (] 

becomes greater than (]*, the energy minimum is at h = +00 and the system opens out. It is 
true that there remains an energy barrier but, in the fracture process to be discuss below, 
the fracture tip acts as a nucleation center and removes this barrier. Thus (]* appears as a 
threshold stress for opening. 
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Figure 4. Energy per unit area as a function of the distance between the two elastomers. 

For 0 > 0*, the connectors are progressively pulled-out of the elastomer. During 
this suction process, the energy is pardy dissipated in viscous losses (caused by the 
slippage of the connectors in the elastomer) and partly stored in forming longer fibrils: 

o dh == [fv ds + e'(h) dh] 1: (3.8) 

(e'(h) represents the derivative of e(h) with respect to h). Here ds == (YA a/kTrl!2dh is the 
length of chain pulled-out when the distance between the two elastomers increased by dh 
and fv is the friction force experienced by one connector 

_ hf- h I' ds 
fv = N ----.If .,,0 dt (3.9) 

In eqn (3.9), N is the degree of polymerization of the connector and ~o is a monomer 
friction coefficient. The factor (hr - h)/hr expresses the fact that the pull-out process 
becomes easier when only a small portion of the connector length remains to be pulled-out. 
For mathematical simplicity, we will hereafter ignore this correction. From eqns (3.7), 
(3.8) and (3.9) we arrive at the constitutive law 

dh/dt = Q-l (0 - 0*) 0> 0* (3.10) 

= 0 0<0* 

where 

(3.11) 

The suction process ends when the connectors are completely pulled-out of the 
elastomer. This occurs for n(h) == N which corresponds to a maximal value of the opening 

(3.12) 
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IV. STEADY STATE CRACK GROWTH 

IV.l. The Cohesive Zone 

We now consider the problem of a steadily growing Mode I crack along the 
interface between the two elastomers. The crack extends in the negative x-direction with its 
tip at x = 0 (see figure 5). It propagates with a constant velocity V. We assume that the two 
elastomers have similar elastic properties and describe the materials outside the cohesive 
zone as a linear elastic material with Young's modulus E and Poisson's ratio v. 

The linear elastic analysis of section II predicts infinite stresses at the crack tip (eqn 
(2.5». In reality, this divergence is relaxed by the dissipative pull-out process which takes 
place at the crack tip. The pull-out process is expected to occur in an approximately planar 
cohesive zone directly ahead of the crack tip. A thorough investigation of cohesive zone 
models can be found in Fager et aI. (1991). See also Xu et aI. (1991). 

crack Y 

x 

crack tip 

Figure 5. A schematic diagram of a cohesive zone ahead of a crack. The cohesive zone is defined by 0 < x < 
L+a , where a is a molecular size. 

The adhesive junction between the two elastomers is an example of a weak adhesive 
junction (de Gennes, 1989a). When a fracture propagates along such a junction, the 
dissipation tends to be localized in a thin ribbon ahead of the crack tip. 

If we assume the cohesive zone 0 < x < L + a to be small compared with the crack 
length, the applied loading can be simulated by the prescription of the elastic K t field far 
away from the crack tip 

O"(x) 
K 

x » L+a (4.1) ---
...J21tx 

u(x) 4K ~ 

E*-{2;( 
x « 0 (4.2) 

The elastic field associated with the cohesive zone can be described in terms of a 
source function <l>(x) (with 0 < x < L + a ) defined by: 

t For notational simplicity, the subscript Ie of Klc and Olc will be systematically dropped 
throughout the remainder of this article. 
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x 
(l - v) J a(x) = -2-E* dy cJ>(y) (x - y)-l/2 x > 0 (4.3) 

=0 x < 0 

L+a 

u(x) = 2(1 - v) fdY cJ>(y) (y - x)l/2 x<L+a (4.4) 
x 

= 0 x>L+a 

This formulation was first introduced by Cottrell (1969) and recently implemented by one 
of us (de Gennes, 1989a, 1989b). It can be shown (Hui and Raphael, 1993) that eqns (4.3) 
and (4.4) are equivalent to the standard formulation 

4K 
u(x) = _ r,::-...JL + a - x 

E*-\j 21t 

L+a 

_ _2_jdt a(t) Lnl...J(L + a - x) + ...J(L + a - t) I 
1t E* ...J (L + a - x) - ...J (L + a - t) 

(0 < x < L + a) (4.5) 

(see e.g. Fager et aI., 1991) 
For x » L + a, eqn (4.3) should reduce to eqn (4.1). The source function cJ>(x) 

therefore satisfies 

L+a 

K - ...j 1t/2 (1 - v) E* JdY cJ>(y) = 0 (4.6) 

Knowing K, the fracture energy G of the interface may be derive from the Irwin equation 
(2.13) 

G= 
K2 

211(1 + v) 
plane stress (4.7a) 

G= 
(1 - v) K2 

211 
plane strain (4.7b) 

where 11 is the shear modulus, 11 = E/ 2(1 + v). 

In order to determine the source function cJ>(x), we distinguish two regions within 
the cohesive zone. For 0 < x < L - a, we adopt the constitutive law eqn (3.10) relating the 
opening rate dh/dt = 2 du/dt and the normal stresses acting on the cohesive zone. Inserting 
eqns (4.3) and (4.4) into eqn (3.10) and assuming plain strain conditions we obtain the 
fundamental equation (de Gennes, 1990) 

x L+a 

JdY cJ>(y) (x - y)-l/2 - a*/Il = A fdY cJ>(y) (y - x)-l/2 
x 

(0 < x < L - a) (4.8) 
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where the eigenvalue A. is defined by 

A. = V/V* (4.9) 

V* Il _ Il ("fA a) 
2 (l - v) Q = 2 (l - vp; N t:o kT 

(4.10) 

Equation (4.8) is an integral equation for the source function <D(x). It must be 
supplemented by the boundary conditions 

cr(x = L - a) = cr* 

2u(x=O) = he 

(4.11) 

(4.12) 

For L - a < x < L + a, we assume that <D(x) is unaffected by the connectors (Raphael and de 
Gennes, 1992). Since in the absence of connectors the fracture energy is simply given by 
W, we have 

W 1/2 
<D(x) = [ ] 

41t Il a2 (1 - v) 
(L - a < x < L + a) (4.13) 

VI.2. The Quasi-Static Limit 

Let us first consider the quasi-static limit V ~ O. For A. = 0, equation (4.8) reduces 
to 

which leads to 

x 

JdY <D(y) (x - y)-l/2 = cr*/Il 

cr* 
<D(x) =--

1t Il x 1/2 
O<x<Lo-a 

(4.14) 

(4.15) 

(the subscript 0 in Lo refers to the limit V ~ 0). Using eqns (4.6), (4.13) and (4.15) the 
applied stress intensity factor in the quasi static limit is found to be 

where 

B = _1t--,-Il_W __ 
(1 - v) (cr*)2 

(we have neglected terms of order a/Lo). 

(4.16) 

(4.17) 

The length La + a of the cohesive zone can be determined by using the boundary 
condition eqn (4.12) 
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Lo+a 
hf = 4(1 - v) JdY <I>(y) yl/2 (4.18) 

Inserting eqns (4.13) and (4.15) into eqn (4.18) and again neglecting a compared with Lo, 
we obtain 

hf = 4 [W(1 - V)]I/2 LOI/2 + 4(1 - v) cr* Lo 
7t Il 7t Il 

Equation (4.19) can be rewritten as 

where 

A = Lo + Bl/2 LoI/2 

A= 7t Il hf 

4(1 - v) cr* 

(4.19) 

(4.20) 

(4.21) 

Using eqns (4.7), (4.16) and (4.20) the zero-rate fracture energy, Go, is found to be (plain 
strain) 

Go 
(1 - v) (KO)2 

21l 

= 4 (1 - v) (cr*)2 [!! + Bl/2 Lo1l2 + Lol 
7t1l 4 ~ 

= 4 (1 - v) (cr*)2 [!! + A] 
7t1l 4 

Hence (Brown et aI., 1993): 

Go = W + hfcr* 

(4.22) 

(4.23) 

The zero-rate fracture energy Go is therefore larger than the thermodynamic work of 
adhesion W. This result is nontrivial since one would expect the pull-out contribution to 
the fracture energy to vanish when the crack propagation rate goes to zero. In fact, as 
explained in section III, there is a minimum force f* (eqn (3.4» required for a fibril to 
exist, even at zero pull-out rate. As the force on a chain that is being pulled-out remains 

finite as V ~ 0, the existence of a zero-rate fracture energy Go that is larger than the work 
of adhesion W is expected. 

Equation (4.23) can also be proven by calculating the work done against stresses in 
the cohesive zone (Rice, 1968; Brown et aI., 1993) 

hf Lo+a 

Go = J cr dh = - j cr(x) (~~)dX (4.24) 

Now, assuming plane strain, we have from eqns (4.3), (4.4), (4.13) and (4.15) : 

cr(x) = cr* (4.25) 
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for 0 < x < Lo - a, and 

E W 1/2 1(2 
O(X) = 0* + -- [ J 2[x - (Lo-a)] 

2(I+v) 411:11 a2 (1 - v) 
(4.26) 

dh [W J1/2 1/2 d = -4(1 - v) [(Lo+a) - x] 
x 41t Jla2 (1- v) 

(4.27) 

for Lo - a < x < Lo + a. Combining eqns (4.24)-(4.27) we obtain 

Lo+a 

Go = hfO* 
2W f 1/2 1/2 

+ -- dx [x - (Lo-a)] [(Lo+a) - x] 
1ta 2 Lo-a 

= hfO* + W (4.28) 

i.e., we recover eqn (4.23). 

VI.3. Propagation at Finite Velocity 

We now consider the steady state propagation of the crack at a finite velocity V. In 
order to simplify the discussion, we will assume that hfO*» W. We can then ignore the 
contribution of the intermolecular forces to the fracture energy (see eqn (4.23» and eqns 
(4.8) and (4.11) reduce to 

x 

JdY «D(y) (x - y)-I(2 - o*/Jl 

L 

f... JdY «D(y) (y - x)-1/2 (0 < x < L) 
x 

O(x = L) = 0* 

(4.29) 

(4.30) 

It turns out that the system (4.29)-(4.30) has an exact solution of the form (Fager et ai., 
1991) 

.m( ) -1 * cosmo -[(1/2) + EJ (L )E 
'VX = Jl 0 --x -x (4.31) 

1t 

with 

tan(m:) = f... (4.32) 

The length L of the cohesive zone can be determined by using eqn (4.4) and the boundary 
condition (4.12) 

L 

4(1 - v) JdY «D(y) yl/2 hf (4.33) 

Using eqn (4.31) we get 
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L = 1t Jl hf 1 
4(1 - v) a* r(l + e) r(l - e) cos1te 

with the limiting behaviors 

L = 1t Jl he 
4(1 - v) a* 

1t Jl hf 2 V 
= 4(1 - v) a* 1t V* 

V=o 

+ ... V»V* 

(4.34) 

(4.35) 

(4.36) 

In eqn (4.34), r(x) is the usual gamma function (see e.g. Abramowitz and Stegun, 1970). 
The fracture toughness K satisfies (see eqn (4.6» 

Using eqn (4.31) we obtain 

L 

...j 1t/2 _E - JdY t1>(y) = K 
(1 + v) 

K = 2 -{2 r(l + e) a* Ll/2 

r(~+ e) 

From eqns (4.7), (4.31) and (4.38) the fracture energy G is found to be 

G = hfa* r(l + e) _1t_ 
r(l - e) [r(~ + e)]2 cos1t€ 

with the limiting behaviors 

G = hfa* 

1tV 
= hf a* "2 V* + ... V» V* 

6 

o 0.5 1.5 2 2.5 

VN* 

Figure 6. Plot of G/hf<1* versus VI V*. 
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(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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Figure 6 represents the behavior of G/he 0* as a function of the ratio VI V*. It is important 

to notice that the slope of the curve at the origin, s(O), is non zero: s(O) = (4 In2)/1t == 0.88, 

and does not differ greatly from the slope at infinity, s(oo) = 1t/2 == 1.57 . Thus, the curve 
does not exhibit a plateau for V < V* and it might be difficult to determine the value of V* 
just by looking for a crossover in the curve behavior (this point has emerged from 
discussions with L. Leger; see also Xu et al. 1991). An more reliable way to determine V* 
would be to look for the velocity at which G == 2.19 he 0*. 

V. DISCUSSION 

In the preceding two sections we have presented a simple model for the adhesion 
between two cross-linked elastomers in the presence of connectors. The model predicts that 
when the crack velocity tends to zero, the fracture energy takes the simple form (eqn 
(4.23)) 

(5.1) 

The model also predicts that the fracture energy increases linearly with the crack velocity 
when the velocity is well above a critical value V* (eqns (4.10) and (4.41)). 

What is the situation on the experimental side? Ellul and Gent (1984, 1985) have 
shown that the incorporation of free chains into a cross-linked network increased 
significantly the fracture energy of interfaces between cross-linked elastomers at finite 
crack growth rates, but had no effects at very low rates. More recently, Reichert and Brown 
(1993) placed a known amount of diblock copolymer at the interface between cross-linked 
polyisoprene and polystyrene. Using a peel test they found that, at the pull-out rate they 
used, the presence of block copolymer increased the fracture energy by up to a factor 5. 
The pros and cons of peel tests are reviewed by Brown (1993). An alternative test is the 
JKR test (after Johnson, Kendall and Roberts, 1971) in which an elastic spherical cap is 
pushed against a flat plate. The contact area is a function of the applied load, the radius of 
curvature and the elastic moduli of the cap, and the thermodynamic work of adhesion W 
between the two materials. If the load is released, the contact area will decrease with time 
and the measured work of adhesion can be interpreted as the fracture energy G (Brown, 
1993). 

The effects of chain pull-out on the adhesion of elastomers has been recently 
investigated by Brown (1993) and by Creton, Brown and Shull (1993) using the JKR 
technique. A thin layer of polystyrene-polyisoprene diblock copolymer was placed at the 
interface between a polystyrene coated substrate and a polyisoprene cross-linked lens. 
Over the whole range of crack speeds investigated (10-10 - 10-7 m/s), the presence of the 
copolymer produced a large increase in the fracture energy G. This increase is believed to 
be due to the pull-out of the polyisoprene chains of the diblock from the bulk cross-linked 
polyisoprene. At low crack speeds the fracture energy of the interface G was found to 
increase linearly with velocity from a threshold value Go. At higher crack speeds, a 
transition occurred after which the G increased at a much lower rate, which could be 
attributed to viscoelastic bulk losses. The measured value of Go was in good agreement 
with the predictions (5.1). Furthermore, Go increased linearly with the areal density of 
copolymer present at the interface, ~, and monotically with the degree of polymerization of 
the polyisoprene chains, N. This agrees well with the predictions of the model presented in 
sections III and IV. The observed value of V* seems, however, to be much lower than the 
prediction (4.10). In his preliminary study, Brown (1993) suggested that this might be 
caused by the polyisoprene chains forming multiple stitches. Indeed, as shown by Hong Ji 
and de Gennes (1993), if each connector crosses the interface many times, Go is not altered 
but V* is reduced by a factor N from the value obtained in the single-stitch case. 
According to Creton et al. (1993), this suggestion seems rather unlikely to be correct. 
Another explanation for the low observed value of V* has been proposed by Creton, 
Brown and Shull (1993). It is based on a very recent model of Rubinstein et al. (1993) for 
the problem of slip between a solid surface with attached grafted chains and a cross-linked 
elastomer. Rubinstein et al. predicted that at very low velocity the friction is due to a 
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balance between chain stretching and chain relaxation and is considerably larger than the 
standard Rouse friction. According to Creton et aI. (1993), a similar augmentation of the 
friction should occur in their case, leading to a significant reduction of V* (see eqn (4.10». 

Quite recently, Marciano, Hervet and Leger (1993) have conducted peel tests on a 
system made of a thin ribbon of elastomeric polydimethylsiloxane (PDMS) brought into 
con'tact with a flat silicon wafer grafted with PDMS chains. The internal structure of the 
grafted PDMS layer (i.e. the loop and tail distribution) was adjusted by varying the 
polymer concentration in the reaction bath, f. From peel force measurements at very low 
velocity (50 A/s), Marciano et aI. estimated Go. They found that Go (as a function of f) 
exhibited an optimumt around f "" 30%. The occurence of an optimum can be qualitatively 
understood by noting that at low f the number of connectors is rather small whilst at high f 
the number of connectors is high but they penetrate into the network with difficulty 
(Marciano et aI., 1993). More theoretical work will be required to understand quantitatively 
the penetration of the connectors into the network and the corresponding fracture energy 
(O'Connors and McLeish, 1993). 
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