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Consider the problem of a mode I semi-infinite crack embedded in a linear 
elastic material with Young's modulus E and Poisson's ratio v (see e.g.[l]). The 
crack extends in the negative x-direction with its tip at x = 0, Fig. 1. The applied 
loading can be simulated by the prescription of the elastic K ̂  field far away from 
the tip 

K a 4K A 
aA(x)= 2424242424242424242  ; UA(X)=e* 

where a ̂  and u ̂  are respectively the tensile stress and the crack displacement in 
the y-direction along y = 0 (K A is the applied stress intensity factor). The material 
parameter E* is given by E* = E for plane stress and E* = E/(1-xa) for plane 
strain. In a cohesive zone model the singular stress is relaxed by inelastic 
deformation in a zone directly ahead of the crack (0 < x < L) (a thorough 
investigation of cohesive zone models can be found in [2]). In this region the 
crack displacement u(x) can be written as 

u(x)= 4Ka " ~ - x  

~,fo L ~-L L-~X) +~-L - t) 
dta(t)Inl ( .~-_  x )_  (L.x/~_ t) I 

where a(x) is the actual normal traction in the cohesive zone. This result was 
obtained by Bueckner [3] and Rice [4] using weight function techniques. It can 
be shown that the requirement for vanishing square root singularity at x = L is 

(i) 

(2) 
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KA_~2 foLdt cY(t) - - - 0  

Recently [5], de Gennes proposed describing the elastic field in the 
cohesive zone in terms of a source function O(x) (with 0 < x < L) defined by 

o(x)=l-~E* f f  dy~(y)(x- y) -~t2 

(3) 

(4) 

~x L X) 1/2 u (x) = 2(1 - v )  dyCb(y)(y - (5) 

In this report we demonstate that this approach is equivalent to the standard 
weight function formulation (2) and (3). 

A 

Our starting point is (4) for the stress field o(x). Let o(s) denote the 
Laplace transform of o, i.e., 

6(s) =L[o(x)]~s)= f0-dx e-'Xo(x) (6) 

(4) can be inverted giving 

2 fo x O ( x ) -  (1 _ v ) E ,  dy f ( y ) ( x - y )  -~'z 

where 
de(x) 

f ( x  ) = L- l[s6(s  )](x) - ~ + q(O*)5(x ) 

(7) 

(8) 

Substituting (7) into (5) we obtained 

4 L x ) l / 2 f y  u ( x ) = - - ~  d y ( y -  ao dt f ( t  ) (y - t) -l'z 

fo x f /  = dt J , (x , t ) f ( t )+ dt Jz(x, t) f( t)  

(9) 

where the functions Jl(x,t) and J2(x,t) are defined by 
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~L 
Jl(x,t)= dy(y-x)lr2(y-t) -lr2 (O<t <x <L) (io) 

~ / ~  t)-1/2 J2(x,t)= dy(y-x)lr2(y - (O<x <t <L) (il) 

respectively. It can be shown that within their respective range of definition the 
two functions Jl(x,t) and J2(x,t) are both equal to the function K(x,t) defined by 

K(x,t) = ~(L - t) (L -x )  

Hence 

(x - t )  2 In I ~-L l--~x) +'~/~ - t) I 

4~ L 
u ( x ) = - - ~  dt K(x,t) f(t) 

- roE4 • fo Zdt[K (x,/) ~ + o(0 +)~(t)] 

dt o(t) -~ = _ r 4 . f 0  L . .  ~K(x,t) 

(i2) 

(13) 

Substituting (12) into (13) we obtain 

4 f0L [ ~ / ( L - x )  1 in i ~/(L -x )  + ( L ' ~ -  t) I] 
u(x)=--~- 7 dt o(t) (L- t )  ~(L----~- (L'~-~-t) J 

- 4  L~-~-XfoLdt 

2 ffdt o(t)Inl'q(-L----~+ ( ~ - - t )  

Equation (14) is identical to (2) with (3). The equivalence of the de Gennes' 
approach and the standard weight function formulation is thus proven. Note that 
(3) is used to establish the equivalence of the two approaches. In general, the 
weight function approach given by (2) does not require the square root singularity 
at the cohesive zone tip x = L to be eliminated. 
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Figure io A schematic diagram of a cohesive zone ahead of a crack. 
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