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Abstract – We study theoretically the profile evolution of a thin viscoelastic film supported onto
a no-slip flat substrate. Due to the nonconstant initial curvature at the free surface, there is a
flow driven by Laplace pressure and mediated by viscoelasticity. In the framework of lubrication
theory, we derive a thin-film equation that contains local viscoelastic stress through the Maxwell
model. Then, considering a sufficiently regular small perturbation of the free surface, we linearise
the equation and derive its general solution. We analyse and discuss in details the behaviour of
this function. We then use it to study the viscoelastic evolution of a Gaussian initial perturbation
through its transient levelling exponent. For initial widths of the profile that are smaller than a
characteristic length scale involving both the film thickness and the elastocapillary length, this
exponent is shown to reach anomalously high values at the elastic-to-viscous transition. This
prediction should in particular be observed at sufficiently short times in experiments on thin
polymer films.

Copyright c© EPLA, 2014

Over the past decades, the study of soft materials in con-
fined geometries and thin films [1–3] has widely attracted
the interest of physicists, biophysicists, chemists and en-
gineers. In particular, thin polymer films are nowadays of
major importance in several industrial applications such
as biocompatible coatings, organic microelectronics and
polymeric data storage devices. In order to gain insights
into the behaviour of these films and their constitutive
macromolecules, a wide class of experiments, including
dewetting [4,5], nanoindentation with gold particles [6],
and levelling of stepped films [7–9], have been performed.
Enhanced mobility effects in ultra-thin polymer films have
been predicted [10,11], and observed [12–14]. Film prepa-
ration by spincoating has also been widely studied [15–18],
and is known to govern surface instabilities and pattern
formation [19–21].

The evolution of the free surface of a thin Newto-
nian liquid film with nonconstant curvature is driven
by the Laplace pressure and mediated by viscosity.
This is well understood from the theoretical point
of view through the so-called capillary-driven thin-film
equation [1–3,22]. Extensive analytical work on the thin-
film equation [23–27] and numerous accurate numerical

schemes [28–31] have been performed in the past decades,
and have allowed for a deeper understanding of its mathe-
matical features. Long-term traveling-wave solutions have
been discussed [32]. Convergence of the solutions to inter-
mediate asymptotic regimes [33] has also been revealed.
In particular, it was shown that the vertically-rescaled so-
lution for any summable initial profile uniformly converges
in time towards a universal self-similar attractor that is
precisely given by the Green’s function of the capillary-
driven linear thin-film equation multiplied by the initial
algebraic volume of the perturbation [34].

The aforementioned capillary-driven thin-film equation
describes the evolution of thin Newtonian films. Yet,
thin films are often made of polymer melts which usu-
ally display viscoelastic properties [35,36] in certain tem-
poral ranges. In this case, some parts of the evolution
may be different from that of a pure viscous fluid, as the
deformation of the system in response to a given stress
is now mediated by both viscosity and elasticity. The
general understanding of viscoelasticity is of great inter-
est in soft condensed matter and physics of glassy sys-
tems, as shown by the numerous recent results in the
literature. New ways to probe the dynamics of viscoelastic
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materials have been explored [37]. Thin viscoelastic films
have been studied experimentally by dewetting [38,39],
and relaxation of nanoimprinted patterns [40,41], in par-
ticular. From the theoretical point of view, viscoelastic
thin-film equations have been derived, using the linear
Jeffreys model [3,42–45].

In the present work, we derive a viscoelastic thin-film
equation based on the Maxwell model, before linearis-
ing it and solving it analytically. In particular, we show
that the regular part of this essential solution converges
in time towards the Green’s function of the purely vis-
cous linear thin-film equation [34]. Using these results,
we then analyse the temporal relaxation of a canonical
Gaussian height perturbation on a thin viscoelastic film,
and study its evolution in terms of a transient levelling
exponent [46]. Finally, we discuss the different observed
regimes. We show in particular that the system displays
anomalous —i.e. not comprised between the elastic and
viscous standard values— transient levelling exponents for
profile widths smaller than a characteristic length scale
that is set by the film thickness and the elastocapillary
length.

Viscoelastic thin-film equation. – In this section,
we derive a Maxwell-based viscoelastic thin-film equa-
tion in the spirit of the Jeffreys-based scheme proposed
in [3,43–45]. We consider a 2D thin viscoelastic film ly-
ing on a flat substrate (see fig. 1). Let the origin O be
taken at the substrate level, and let z = h(x, t) be the ver-
tical height profile of the film at horizontal position x and
time t. The system is assumed to be spatially invariant in
the other horizontal direction y. Let u = (ux, uz) be the
2D velocity field in the film. For an incompressible flow,
the Navier-Stokes equation reads [47]

ρ
du

dt
= −∇p + ∇σ′, (1)

where ρ is the mass density of the material, p is the pres-
sure, σ′ is the extra-stress tensor [47], and d

dt = ∂t +u ·∇
is the convective derivative. Let h0 be the thickness at
infinity, w0 be a typical horizontal dimension (see fig. 1),
and ε = h0/w0. Within the the lubrication approxima-
tion, one has ε � 1. We define the space and time
dimensionless variables through x = w0X, z = h0Z,
h = h0H, t = t0T , where t0 is a typical time scale yet
to be determined. Incompressibility implies that the di-
mensionless velocities read ux = v0UX and uz = ε v0UZ ,
where v0 = w0/t0. In order to determine the scaling for
pressure and time, we balance the typical gradients of
Laplace pressure and viscous stress in eq. (1). This yields
p = (γh0/w2

0)P = (η/(t0ε2))P which sets t0 = ηw0/(γε3),
where γ is the surface tension and η is the viscosity.
Finally, estimating the extra-stress tensor in the viscous
limit, within the lubrication approximation, leads to

(
σ′

xx σ′
xz

σ′
zx σ′

zz

)
=

η

t0

⎛
⎜⎝Σ′

XX

Σ′
XZ

ε
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ε
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⎞
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Fig. 1: Schematic of the vertical height profile z = h(x, t),
at horizontal position x and time t, of a thin viscoelastic film
placed atop a flat substrate. The system is assumed to be spa-
tially invariant in the other horizontal direction y. The typical
horizontal length scale is denoted by w0, and the thickness at
infinity by h0. The intern rheology of the viscoelastic fluid is
accounted for through a local Maxwell model (see eq. (7)) of
shear viscosity η and shear elastic modulus G, as symbolised
by the cartoon showing the damper and spring in series.

Equation (1) then yields the following set of equations:

ε2Re
dUX

dT
= −∂XP + ε2∂XΣ′

XX + ∂ZΣ′
XZ , (3a)

ε4Re
dUZ

dT
= −∂ZP + ε2∂XΣ′

ZX + ε2∂ZΣ′
ZZ , (3b)

where Re = ρv0w0/η is the Reynolds number. In the
framework of first-order lubrication approximation in ε,
eq. (3) simplifies to

∂XP = ∂ZΣ′
XZ , (4a)

∂ZP = 0. (4b)

The boundary conditions at the free surface Z = H(X,T )
are set by the small-slope approximation of the Laplace
pressure and the no-shear stress:

P
∣∣
Z=H

� −∂ 2
XH, (5a)

Σ′
XZ

∣∣
Z=H

= 0. (5b)

Integrating eq. (4) together with eq. (5) leads to

Σ′
XZ = (H − Z) ∂3

XH. (6)

In order to account for viscoelasticity, we use the Maxwell
model [35,36]. This simple approach relates the local shear
strain rate ∂tεxz = ∂zux and the local shear stress σ′

xz

through

σ′
xz + τ∂tσ

′
xz = η∂tεxz, (7)

where τ = η/G is the single characteristic time, with G
being the shear elastic elastic modulus. In dimensionless
variables, eq. (7) reads

Σ′
XZ + T ∂T Σ′

XZ = ∂ZUX , (8)

where T = τ/t0. Substituting eq. (6) into eq. (8) yields

(1 + T ∂T )
[
(H − Z) ∂3

XH
]

= ∂ZUX , (9)
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and spatially integrating eq. (9) together with the no-slip
boundary condition at the substrate, UX

∣∣
Z=0

= 0, leads
to

(1 + T ∂T )
[(

HZ − Z2

2

)
∂3

XH

]
= UX . (10)

In order to close the system we invoke mass conservation:

∂T H + ∂XQ = 0, (11)

where Q =
∫ H

0
UX dZ. Combining eq. (10) and eq. (11),

together with eq. (5a), finally leads to the governing
equation

∂T H = −∂X

[
H3

3
∂ 3

XH

]

−T ∂X

[
H2

2
∂T H∂ 3

XH +
H3

3
∂T ∂ 3

XH

]
, (12)

that we will refer to as the viscoelastic thin-film equation
(VTFE). Note that by setting T = 0 in eq. (12) one recov-
ers the well know 2D capillary-driven thin-film equation
for Newtonian fluids [1–3,22]. Note also that eq. (12) is a
particular case of the Jeffreys-based viscoelastic thin-film
equation [3,43–45] for which the early time constant of the
Jeffreys model has been set equal to zero.

General linear solution. – Let us now consider the
case in which the surface perturbation is small compared
to the overall thickness of the film. One can then write
H(X,T ) = 1+ ζ(X,T ) where |ζ(X,T )| � 1. In this limit,
eq. (12) can be linearised as follows:

∂T ζ = −1
3

[
∂ 4

Xζ + T ∂T ∂ 4
Xζ

]
. (13)

In order to get rid of the factor 1/3, we redefine time
through T → 3T and T → 3T so that eq. (13) becomes

L ζ(X,T ) = 0, (14)

where we have introduced the linear differential operator:

L =
[
∂T

(
1 + T ∂ 4

X

)
+ ∂ 4

X

]
. (15)

In the following, eq. (14) will be referred to as the linear
viscoelastic thin-film equation (LVTFE). For a sufficiently
regular initial condition ζ(X, 0) = ζ0(X), the general so-
lution of eq. (14) is given by the convolution of ζ0 and the
function F given by

F(X,T ) = F (X,T ) + e−T/T δ(X), (16)

where

F (X,T ) =
∫

dK

2π

[
exp

(
− K4T

1 + T K4

)
− e−T/T

]
eiKX .

(17)

Fig. 2: (Colour on-line) Plot of the regular part F̃ (U, Θ) of
eq. (16), as a function of U , as given by eqs. (19) and (21), for
different rescaled times Θ (dashed curves). The solid red line
corresponds to φ(U) as defined in eq. (22) [34].

Based on the self-similar behaviours observed in previous
studies [27,34], we let the change of variables

X = U T 1/4, (18a)
K = QT−1/4, (18b)

which, together with eq. (16), leads to

T 1/4 F̆(U, T ) = F̆ (U, T ) + e−T/T δ(U), (19)

where F̆(U, T ) = F(X,T ) and

F̆ (U, T ) =
∫

dQ

2π

[
exp

(
− Q4

1 + T
T Q4

)
− e−T/T

]
eiQU .

(20)
Furthermore, defining the rescaled time Θ = T/T we let
F̆ (U, T ) = F̃ (U,Θ) with

F̃ (U,Θ) =
∫

dQ

2π

[
exp

(
− Q4

1 + Θ−1 Q4

)
− e−Θ

]
eiQU .

(21)
Figure 2 shows a plot of the regular part F̃ (U,Θ) of
eq. (16) as a function of U , as given by eqs. (19) and (21),
for different rescaled times Θ (dashed curves). The solid
red line corresponds to

φ(U) =
∫

dQ

2π
e−Q4

eiQU

= T 1/4F̆LTFE(U, T ), (22)

where F̆LTFE is the Green’s function of the purely viscous
linear thin-film equation (LTFE) [34]. The inset shows the
central value F̃ (0,Θ) as a function of Θ. The function F̃
seems to converge in time to φ(U). This convergence can
in fact be proven rigorously (see appendix). Therefore,
in the linear case, we recover the intuitive expectation
that the long-term evolution of a thin viscoelastic film
is well described by a purely viscous thin-film equation.
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Fig. 3: (Colour on-line) Logarithmic amplitude log10 ζ̃(0, Θ)
of the perturbation as a function of logarithmic rescaled time
log10 Θ as given by eqs. (23) and (24) for different values of the
rescaled dimensionless initial width Â = AT −1/4, but identical
volume. The inset shows the same plot for smaller values of Â.
The grey dashed line corresponds to a purely viscous Θ−1/4

scaling.

The corresponding convergence time sets the time win-
dow in which viscoelastic effects are important and need
to be considered when studying the dynamics of the film.
We expect this convergence time to scale like T and will
now study this in more detail in the following through a
particular example.

Evolution of a Gaussian perturbation. – As men-
tioned in the previous section, the evolution of the sur-
face displacement ζ(X,T ) for a given initial condition
ζ(X, 0) = ζ0(X) is given by the convolution of the function
F(X,T ) and ζ0(X):

ζ(X,T ) = (F ∗ ζ0)(X,T )
= (F ∗ ζ0)(X,T ) + e−T/T ζ0(X), (23)

according to eqs. (16) and (17). Let us consider the case
of a normalised Gaussian perturbation of the form

ζ0(X) =
1√

2πA2
e−X2/(2A2), (24)

where a = w0A is the initial horizontal width in dimen-
sioned variables. In particular, we focus on the evolution
of the central height ζ(0, T ) of the perturbation for dif-
ferent values of the dimensionless initial width A. We let
ζ(0, T ) = ζ̃(0,Θ). Figure 3 shows a plot of log10 ζ̃(0,Θ)
as a function of log10 Θ as given by eq. (23) together with
eq. (24), for different values of the rescaled dimensionless
width Â = AT −1/4, but identical volume. As one can see,
regardless of initial width, all the curves are attracted to
the same Θ−1/4 grey dashed line at long times, that corre-
sponds to the purely viscous evolution for the considered
perturbation volume. Two different situations, that will
be discussed in detail in the next part, can be identified in
regard to the existence or not of a change in concavity. For
the case where concavity changes, the convergence occurs

Fig. 4: (Colour on-line) Absolute values of the slopes of the
curves in fig. 3 as a function of reduced time Θ, for different
rescaled dimensionless widths Â = AT −1/4 of the initial profile
(see eq. (24)). The inset shows the same plot for smaller values
of Â. The grey dashed line correspond to the purely viscous
1/4 exponent.

as expected at Θ ∼ 1, that is for T ∼ T . In this situation,
the Maxwell time thus directly sets the time scale of the
crossover between the elastic and viscous behaviours.

Transient levelling exponent. – In a similar way
to [46], we let the time-dependent levelling exponent α(Θ)
be defined as

ζ̃(0,Θ) = ζ̃(0, 0)Θ−α(Θ). (25)

or equivalently

α(Θ) =̂ − log10 ζ̃(0,Θ) − log10 ζ̃(0, 0)
log10 Θ

. (26)

The slopes of the curves in fig. 3 read

d log10 ζ̃(0,Θ)
d log10 Θ

= −α(Θ) − α′(Θ)Θ log10 Θ, (27)

which implies that for Θ = 0, Θ = 1, and Θ → +∞ for
which α′(Θ) = 0, the slopes of the curves correspond to
the levelling exponent α. Note that this is also relevant
for all time windows where α′(Θ)Θ log10 Θ � α(Θ), and
thus in particular for the crossover region where Θ ∼ 1.
Figure 4 shows a plot of the absolute values of the slopes
of the curves in fig. 3 as a function of reduced time Θ, for
different rescaled widths Â of the initial profile, but identi-
cal volume. In figs. 3 and 4, two different situations can be
distinguished. The first one is the situation for which the
crossover from α = 0 to α = 1/4 happens with no change
of concavity in fig. 3 or, equivalently, with no overshoot in
fig. 4 (see blue curve with Â = 10 on both figures). The
second one is the situation for which the aforementioned
crossover takes place with a change of concavity in fig. 3
or, equivalently, with an overshoot in fig. 4 (see curves
Â = 1 and below on both figures). To understand the first
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situation, we recall that for a purely viscous liquid, a given
initial perturbation takes a certain time Tcv to converge
to the self-similar attractor [34,48,49]. In the particular
linear case considered here, this time is expected to scale
as the width of the initial perturbation to the power 4.
Therefore, the first situation is that for which Tcv 	 T
and the elastic delay of the evolution has no visible im-
pact as it is shorter than that of the convergence towards
the self-similar attractor. On the other hand, the second
situation corresponds to Tcv � T and thus reveals the
full viscoelastic behaviour. The transition between the
two situations is thus given by Tcv ∼ T , which means
Â4 = A4T −1 ∼ 1, or in real variables

a4 ∼ τ
γh3

0

η
∼ γh3

0

G
. (28)

Note that one must also keep h0 � a for the lubrication
approximation to remain valid. Interestingly, the transi-
tion between the two situations described above appears to
be controlled by the ratio of the width of the perturbation
to a new length scale that combines the elastocapillary
length and the film thickness. This length scale is simply
the length explored by levelling during a Maxwell time.
We shall now focus on the second regime, namely Â � 1.
To access this regime without breaking the lubrication hy-
pothesis, one can think, for instance, of soft materials with
small shear modulus G. Here, the clear overshoot in the
slope (see fig. 4) can give rise to what we will refer to as
an anomalous transient levelling exponent. In fact, if an
experimental system consisting of a thin viscoelastic film
is explored within a time window that is in the vicinity
of the maximum of the curve in fig. 4, one may read a
levelling exponent α > 1/4. This value of the exponent
is called anomalous since it is not comprised between the
elastic (0) and viscous (1/4) standard values. Note that
the temporal window of occurrence of this effect may be
large due to the logarithmic scale of fig. 4, and to the pro-
portionality of real times with the time constant τ . In
experimental systems where the viscoelastic time scale τ
is large enough, as with glassy polymer films for instance,
one therefore expects to observe an apparently constant
and too large levelling exponent that may simply be the
result of this anomalous viscoelastic transient overshoot.
This result is somewhat analogous to the one highlighted
previously by Christov and Stone for diffusion exponents
in granular materials [46]. In their system, the origin of
the anomalous scaling exponent is a non-constant diffu-
sion coefficient that changes the structure of the diffusion
equation and induces a loss of self-similarity.

Conclusion. – We have here presented a theoretical
analysis of the capillary-driven relaxation of a thin vis-
coelastic film within the lubrication approximation. After
recalling the ingredients of the model, we derived a vis-
coelastic thin-film equation that accounts for viscoelastic-
ity through a Maxwell model. We linearised this equation
and obtained its general solution. We proved that this

solution converges in time to that of the purely viscous
linear thin-film equation, which means that the long-term
evolution of a thin viscoelastic film is well described by
a purely viscous model. We then looked into the evolu-
tion of a Gaussian initial perturbation and analysed it in
terms of its transient levelling exponent. We discussed
the different situations as a function of the initial width
of the perturbation compared to a new length scale, that
we identified and that combines the elastocapillary length
and the film thickness. For small enough widths, provided
that lubrication approximation remains valid, we revealed
the possibility of observing anomalous transient levelling
exponents if the system is explored within a certain time
window around the characteristic viscoelastic time. This
work should be of interest for the study of the levelling
dynamics of thin polymer films in the vicinity of the glass
transition temperature, for which viscoelastic effects can
be important.

∗ ∗ ∗

The authors wish to thank A. Darmon, J. D.

McGraw, K. Dalnoki-Veress and J. A. Forrest for
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Appendix

We here rigorously show that the regular part of eq. (16)
as given by eqs. (19), (20) and (21) converges in time to
the Green’s function of the purely viscous linear thin-film
equation (LTFE), as defined in [34]. For all Θ > 0 and all
Q one has∣∣∣∣

[
exp

(
− Q4

1 + Θ−1 Q4

)
− e−Θ

]
eiQU

∣∣∣∣ ≤ g(Q), (A.1)

where g(Q) = 2/(1 + Q2) is a summable function. There-
fore, invoking the dominated convergence theorem [50],
one gets:

lim
Θ→+∞

F̃ (U,Θ) = φ(U), (A.2)

where φ(U) is defined in eq. (22). According to eqs. (19)
and (21) one may thus write [34]

lim
T→+∞

T 1/4 F̆(U, T ) = T 1/4 F̆LTFE(U, T ). (A.3)
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