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Polymer adhesive has been the subject of many theoretical and experimental
studies in the last few years [1]. Certain weak adhesive junctions [2] may be
described by a mechanical model where: (i) the opening rate dh/dt vanishes when
the stress ¢ is below a certain threshold value 6* and (ii) for 6>6*, the opening
rate increases with the stress as dh/dt = Q(c-0*) where Q is a friction coefficient.
This model, called in the literature the Model II, has been explored in detail
{3][4]. Intermolecular interactions, which give rise to the thermodynamic work of
adhesive W, have been recently incorporated into this model in the limit of zero
crack velocity [5][6]. In this paper we generalise these studies to finite crack
velocities. In particular, we calculate the length of the junction L as well as the
fracture energy G.

Consider the problem of a mode I semi-infinite crack embedded in a linear
purely elastic material. For plane strain conditions the normal stress distribution
o(x) and the crack displacement u(x) are respectively given by [7]

o(x)= x>0; ox)=0 x<0 (1)

K
V21 x

2(1-v) f—x
— _2 . - (2
u(x)= K > x<0; ux)=0 x>0 )

where | is the shear modulus, v the Poisson ratio and K the stress intensity factor.
The fracture energy per unit area G is given by Irwin’s equation [8]

and

G =—K"> (3)

In a cohesive zone model the singular stress (1) is relaxed by inelastic
deformation in a zone directly ahead of the crack (see Fig. 1). In this region
(0O<x<L) the elastic field may be described in terms of a source function d(x)
defined by [9][3]
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W= [ dy®0) ()™ )
1}
and
L
u@=201-v) [ o) -x" 5)
It can be shown [10] that (4) and (5) are equivalent to the standard formulation
[11]

- —- L — —
L-x 1 VJ' dyc(y)ln'vL x+VL —y . 6)
2n w Jo VL —x—L -y

At large distance (Ix| >> L), (4) and (5) reduce to (1) and (2) with

K _(* (7)
rw‘fo dyd(y).

The mechanical behaviour of the junction is described [S][12] by the
following law relating the rate of opening dh/dt=2du/dt and the normal stress 6
(Model 1)

2(1-v)
= K
u(x) m

gﬁ_ 16— o* *. @_ *
dt_Q (c-0%*)  o>0% dt—O o< o*. (8)

where Q is the friction coefficient of the junction and c* is a threshold stress.
Note that the opening rate is continuous at ¢ = ¢*.

We now consider the problem of a steadily growing crack with translational
velocity V. Inserting (4) and (5) into (8) we obtain the fundamental equation

G*
AD(x) = “E (9

where A, is the following linear integral operator

AD(x) EJ;xdyd)(y)(x_)’)_llz—?»deycb(_y)(y oy (10)

and
A =V/V*areduced velocity with V* = W[2(1 - v)Q].

Equation (9) is a non-homogeneous linear integral equation for the source
function ®(x). It must be supplemented by the boundary condition
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hy=2u(x=0) (11)

where h, is the terminal value of the junction opening. Using (5), (11) can be
rewritten as

hy L 12 (12)
=| dyd .
21-v) fo ly®(y)y
We have also the conditions that
(i) in the absence of connectors G reduces to W, (13)
(ii) in the zero-rate limit (V —0) G reduces to G, = W + o*h, [6]. (14)

The solution of (9) can be written as

D(x) = Oy(x) + Dy, (x) (15)

where ®,(x) and ®,,(x) satisfy respectively

o-*
AL, (x)=— (16)
V!
and
AD,(x) =0. a7
The source function ®,(x) was derived by Fager et al. [4],
a% 1 Tte c
Qy(x)= —— ; x{z )(L -x) (18)
HB(;-¢, ;+¢)
where ¢ is related to the reduced velocity A by
tan(me) = A. (19)

In (18), B(x,y) denotes the beta function B(x,y) = I'(x) ['(y)/T'(x+y) where I'(x) is
the gamma function [13]. The source function ®,(x), which originates from the
intermolecular forces, is given by

4 " 1 1”2 ‘G“‘) ~1+e (20)
o = L L—- .
() (nu(l—v)) B(;-&8) A

This form is obtained by solving (18) with the conditions (14) and (15). The
dependence
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was already proposed by de Gennes and Troian in their investigation of the
so-called Model I [14]. Knowing ®(x) = ®,(x) + ®,(x), we can now calculate the
length of the junction L, see (12), the stress intensity factor K, see (7) and finally
the fracture energy G, see (3).

The length L of the cohesive zone can be determined by using the boundary
condition (11). Inserting (15) into (12) we obtain

hy  o*B(1—g1+¢) ( 14 )"23(1 €€) 1 (21)
=—— 2 "Lt L
41-V) K BG-e;+e) \TWI-V)) B(:-eg)

Hence

(- ——e) \/1+1h’+1 (22)

L
Ly (5,5 0*;,IB 1+e,——e’
| (1 €= +e)

where L, denotes the zero-rate limit

n MK 1 (23)
4(1——v)W( . gﬁﬂ)

At low velocities (V<<V*) we obtain

L,=

4In2 V Vv

_————othf-l—/:+ W . (24)
1+T '

At higher velocities (V>>V*) two cases must be considered depending on the
value of the parameter 6*h/W
(i) if o*h,/W>>1 then

L=LJ1+

1 uhf K* 1 (25)
2(1 V) o* V* |%
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(ii) if o*h,/W<< 1 then

T WVY vV W
— =t PH Tl 1e¢—
L 16(1—v)W(V*) NZAP (26)

i

1 Wyv WV

Lssivoer o<y

Figure 2 represents the behaviour of L/L, as a function of the reduced velocity
V/V* for three values of the parameter 6*h,/W.

The stress intensity factor K can be determined by using (7). Inserting (15)
into (7) we have

*B(:—¢,1+¢€) 2
K _o* ? : 1/2+(_"X_) . (27)
V2mu B B(;—¢,;+¢) (1 -v)
Substitution of (22) into (27) yields
B(1+ 8,3 —£)
k=2 W +oth——— | (28)
1-v B(l-¢,;+¢)
Using Irwin’s equation (3) we obtain the fracture energy of the junction
B(1 +e,§—e)
G=W+o*h———F (29)
B (1 - E,5+ 8)
with the limiting behaviours
4In2 1 V 1%
=G| 1 +— —=+... —«1
C=Cy =T yx €
c"hf
(30)
nV 1%
G= C*hfi‘ﬁ T/—": >1

where G, is the zero-rate limit: G, = W + 6*h, [6].
Figure 3 represents the behaviour of (G-W)/G,-W) as a function of the

reduced velocity V/V*. This function is independent of the parameter o*h, /W,
see (29). Equation (29) indicates that at any velocity the fracture energy is a
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linear combination of the thermodynamic work of adhesion and the pull-out work.

In this paper we have investigated the properties of the so-called Model II
taking into account molecular interactions. This model may be used to describe
the process of chain pull-out and the relation between chain pull-out and interface
toughness in the adhesion of elastomers [15][16]. Our main results are expres-
sions (22) and (29) for the length L of the junction and for the fracture energy G
as a function of the reduced velocity V/V*, the thermodynamic work of adhesion
W and the zero-rate limit of the pull-out work c*h,.

Note that in our model the stress o(x) ahead of the cohesive zone tip
becomes much larger than 6* as one approaches x = L. Nevertheless, the junction
remains closed for x > L for one must first reach a sufficiently large stress to
overcome the attractive intermolecular forces and to separate the two sides of the
junction. Only then can the opening process described by (8) take place.
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Figure 1. A global view of the cohesive zone.
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Figure 2. Plots of L/L, versus V/V* for different values of the para-
meter o*h_/W: curve 1, o*h_/W=0.01; curve 2, g*h_/W=0.25;
f f
curve 3, O*hf/W=5.
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Figure 3. Plot of (G—W)/(GO—W) versus V/V¥*.
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