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Polymer adhesive has been the subject of many theoretical and experimental 
studies in the last few years [1]. Certain weak adhesive junctions [2] may be 
described by a mechanical model where: (i) the opening rate dh/dt vanishes when 
the stress ~ is below a certain threshold value ~* and (ii) for ~>~*, the opening 
rate increases with the stress as dh/dt = Q-~(o-o*) where Q is a friction coefficient. 
This model, called in the literature the Model II, has been explored in detail 
[3] [4]. Intermolecular interactions, which give rise to the thermodynamic work of 
adhesive W, have been recently incorporated into this model in the limit of zero 
crack velocity [5][6]. In this paper we generalise these studies to finite crack 
velocities. In particular, we calculate the length of the junction L as well as the 
fracture energy G. 

Consider the problem of a mode I semi-infinite crack embedded in a linear 
purely elastic material. For plane strain conditions the normal stress distribution 
or(x) and the crack displacement u(x) are respectively given by [7] 

and 

K 
o ( x )  - x > 0;  = 0 

 /2rcx 
x < 0  

2 (1 -  V)K~, ] ' ~  
u ( x ) -  Ix ~/ 2n x<0 ;  u (x )=0  x > 0  

(i) 

(2) 

where Ix is the shear modulus, v the Poisson ratio and K the stress intensity factor. 
The fracture energy per unit area G is given by Irwin's equation [8] 

G - 1-VK2" 
2IX 

(3) 

In a cohesive zone model the singular stress (1) is relaxed by inelastic 
deformation in a zone directly ahead of the crack (see Fig. 1). In this region 
(0<x<L) the elastic field may be described in terms of a source function ~(x) 
defined by [9][3] 

I~ Journ of Fracture 67 (1994) 



R24 

and 

O(X) = I.tfo x dy(X)(y) ( x - y )  -it2 

fx L -- X) 1/2. u(x) = 2(1 - v )  dye(y)  (y 

(4) 

(5) 

It can be shown [10] that (4) and (5) are equivalent to the standard formulation 
[11] 

1- f i   V-yl dy (y)In (6) 

At large distance (Ixl >> L), (4) and (5) reduce to (1) and (2) with 

g L 

2~- fo dye(y) .  
(7) 

The mechanical behaviour of the junction is described [5][12] by the 
following law relating the rate of opening dh/dt=2du/dt and the normal stress 
(Model II) 

dh dh Q-l(o_~,) o > c * ;  0 a < c * .  (8) 
dt dt 

where Q is the friction coefficient of the junction and c* is a threshold stress. 
Note that the opening rate is continuous at ~ = o*. 

We now consider the problem of a steadily growing crack with translational 
velocity V. Inserting (4) and (5) into (8) we obtain the fundamental equation 

AxO(x) = - -  (9) 
~t 

where A~ is the following linear integral operator 

AxO(x ) = foXdydp(y) (x-y)  ~/2- ~, f LdydP(y)(y --x) -~'2 

and 
~. = V/V* a reduced velocity with V* = Ix/[2(1 - v ) Q  ]. 

Equation (9) is a non-homogeneous linear integral equation for the 
function O(x). It must be supplemented by the boundary condition 

(io) 

source 
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h z = 2u(x = 0) (11) 

where h e is the terminal value of the junction opening. Using (5), (11) can be 
rewritten as 

hf L C dy(~(y )y 1:2. 
4(1 - v )  - Jo 

(12) 

We have also the conditions that 
(i) in the absence of connectors G reduces to W, 
(ii) in the zero-rate limit (V -->0) G reduces to G O = W + o*ht [6]. 

(13) 
(14) 

The solution of (9) can be written as 

O(x) = O.(x) + O (x) (15) 

where (I).(x) and OM(x ) satisfy respectively 

AxO.(x) = -  

and 

A~Ou(x) = O. 

(16) 

(17) 

The source function On(x ) was derived by Fager et al. [4], 

On(x)= ~* 1 -(½+~)(L X - -  X )  ¢ 
1 1 

g B ( ~ - e ,  ~+e) 

(18) 

where ~ is related to the reduced velocity ~. by 

tan(me) = 2L. (19) 

In (18), B(x,y) denotes the beta function B(x,y) = F(x) F(y)/l-'(x+y) where F(x) is 
the gamma function [13]. The source function ~u(x), which originates from the 
intermolecular forces, is given by 

( w )" 1 (20) 

This form is obtained by solving (18) with the conditions (14) and (15). The 
dependence 
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x - x) - ' ' '  

was already proposed by de Gennes and Troian in their investigation of the 
so-called Model I [14]. Knowing (l)(x) = (I),(x) + (I)u(x), we can now calculate the 
length of the junction L, see (12), the stress intensity factor K, see (7) and finally 
the fracture energy G, see (3). 

The length L of the cohesive zone can be determined by using the boundary 
condition (11). Inserting (15) into (12) we obtain 

hf t~*B(1-e,1 +e) .  ( W )l'2B(1-e,e)LV2 
- -  1 - - - - L  + . . . . . .  . 

4(1-v)  ~ ~ - ~ - a , i + a )  tul-t(1-v)) B(~-I~,E) 
(21) 

Hence 

L 
Lo 

11 , . ~ f  B ( ~ q - e )  "~ 1+-~+1 

1 .,'I / G*h B(1 +~,}-~) 
, q  

(22) 

where L o denotes the zero-rate limit 

L ° - 4 ( 1 - v )  W { _ U . ~  "V" 
+--C+I) 

(23) 

At low velocities (V<<V*) we obtain 

41n2 V ] V 
L = L° l+~F+7°*hfV*+"" V* --<<I. (24) 

At higher velocities (V>>V*) two cases must be considered depending on the 
value of the parameter o*h/W 
(i) if o*hf/W>>l then 

1 v 
L =  --*>>1 

2(1 - v )  c* V* V 
(25) 
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(ii) if a*h~/W<< 1 then 

L_= ,< 7 
16(1 - v )  W (,V-g) 

V W 
1 ¢~-7¢ (~*hI (26) 

L_=_ 
1  h:v w v 

2(1 - v )  (~* V* 1 << ~--~/<< V* 

Figure 2 represents the behaviour of L/L o as a function of the reduced velocity 
V/V* for three values of the parameter c*hf/W. 

The stress intensity factor K can be determined by using (7). Inserting (15) 
into (7) we have 

K cs'~ll B (~ - E) 1 "l- ~) L 112 .t_ ( W ~1,2 
(27) 

Substitution of (22) into (27) yields 

1 (1-e,~+e)J 

Using Irwin's equation (3) we obtain the fracture energy of the junction 

B(1 1 + e , 7 - e )  G = W + (~*h/ 1 
B(1-8 ,~+8)  

with the limiting behaviours 

G =G°ll +41-n2 1 V I r e  l +~. 7-*+''" V 
V,<< 1 

nV V 
G =o*h/2v, V,>> 1 

(28) 

(29) 

(30) 

where G O is the zero-rate limit: G O = W + c*hf [6]. 

Figure 3 represents the behaviour of (G-W)/Go-W) as a function of the 
reduced velocity V/V*. This function is independent of the parameter o*h~/W, 
see (29). Equation (29) indicates that at any velocity the fracture energy is a 
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linear combination of the thermodynamic work of adhesion and the pull-out work. 

In this paper we have investigated the properties of the so-called Model II 
taking into account molecular interactions. This model may be used to describe 
the process of chain pull-out and the relation between chain pull-out and interface 
toughness in the adhesion of elastomers [15][16]. Our main results are expres- 
sions (22) and (29) for the length L of the junction and for the fracture energy G 
as a function of the reduced velocity V/V*, the thermodynamic work of adhesion 
W and the zero-rate limit of the pull-out work t~*h r. 

Note that in our model the stress c(x) ahead of the cohesive zone tip 
becomes much larger than ~* as one approaches x = L. Nevertheless, the junction 
remains closed for x > L for one must first reach a sufficiently large stress to 
overcome the attractive intermolecular forces and to separate the two sides of the 
junction. Only then can the opening process described by (8) take place. 
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Figure i. A global view of the cohesive zone. 
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Figure 2. 
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Figure 3. Plot of (G-W)/(G0-W) versus V/V*. 
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